A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 9 Ω
Das Banner der Rhetos-Website: zwei griechische Denker betrachten ein physikalisches Universum um sie herum.

Bahngeschwindigkeit

Physik

© 2016 - 2025




Definition


Als Bahn, Bahnkurve oder Trajektorie bezeichnet man die Linien - gerade oder gebogen - auf der sich ein Gegenstand bewegt. Die Bahngeschwindigkeit gibt an, wie schnell ein Gegenstand sich auf seiner Bahn bewegt. Übliche Einheiten sind zum Beispiel km/h oder m/s. Etwas anderes ist die Winkelgeschwindigkeit.



Bildbeschreibung und Urheberrecht
Raumschiffe oder Satelliten in einer erdnahen Umlaufbahnen legen in jeder Sekunde etwa 7 bis 8 km Strecke zurück. Ihre Bahngeschwindigkeit beträgt dann zum Beispiel 7 bis 8 km/s. © Gunter Heim (Globus) NASA (Raumschiff) ☛


Der Mond als Beispiel


Der Mond wandert einmal im Monat um die Erde. Die Bahn, auf der er sich bewegt erscheint dem bloßen Auge in etwa als Kreis. Die Länge der Kreislinie ist in etwa 2,4 Millionen Kilometer. Dafür benötigt der Mond rund 28 Tage oder gut 28 mal 24 Stunden, also rund 672 Stunden. 2,4 Millionen Kilometer verteilt auf 672 Stunden gibt pro Stunde etwa 3571 Kilometer. 3571 km/h ist dann die Bahngeschwindigkeit des Mondes. Siehe auch Mondbahn ↗

Die Umfangsgeschwindigkeit von Werkzeugen


Bei schnell rotierenden Werkzeugen wie zum Beispiel Bohrern oder Fräsen interessiert oft, wie schnell ein Stück des kreisförmigen Randes ist. Je schneller der Rand einer Kreissäge sich dreht, desto heißer wird zum Beispiel auch das Material. Bei Werkzeugen nennt man die Geschwindigkeit eines Teiles vom Umfang die Umfangsgeschwindigkeit[1] ↗

Winkel- oder Bahngeschwindigkeit?


Bahnen können beliebig geformt sein, zum Beispiel auch kreisförmig, etwa die Umlaufbahn eines Satelliten um die Erde oder eines Elektrons um den Atomkern. Bei kreisförmigen Bahnen gibt man die Geschwindigkeit entweder als Bahngeschwindigkeit (siehe oben) oder als Winkelgeschwindigkeit an. Der Mond auf seiner Bahn um die Erde hat zum Beispiel eine Winkelgeschwindigkeit ω von rund 13° pro Tag. Lies mehr unter Winkelgeschwindigkeit ↗

Formel


  • v = ω·r

Legende


  • v = z. B. in m/s oder km/h, die hier erklärte Bahngeschwindigkeit

Fußnoten


  • [1] Michael Beck, Hans-Werner Wagenleiter, Peter Wollinger: Technische Mathematik. Metallbauer und Konstruktionsmechaniker. Fachkenntnisse. Verlag Handwerk und Technik. Hamburg. 3. Auflage. ISBN: 3-582-03192-6. Dort wird die Umfangsgeschwindigkeit im Kapitel 3 Spandende Fertigung auf Seite 38 mit Formeln behandelt.