A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 9 Ω
Das Banner der Rhetos-Website: zwei griechische Denker betrachten ein physikalisches Universum um sie herum.

Bruch potenzieren

(2/5)³ = 2³/5³

© 2016 - 2025




Basiswissen


(a/b) als Ganzes hoch n gerechnet kann man immer umformen zu a hoch n durch b hoch n. Mit dieser Regel kann man Klammern um Brüche auflösen.

Was heißt potenzieren?


  • Man hat einen Bruch wie z. B. 2/5.
  • Potenzieren meint: man rechnet den ganzen Bruch hoch irgendeine Zahl.
  • Zum Beispiel: (2/5)³, man spricht: zwei Fünftel hoch drei.
  • Wichtig: den Bruch in einer Klammer schreiben.

Fachworte


  • Das Ganze, also die (2/5)³ nennt man eine Potenz ↗
  • Die (2/5), das was "unten" steht, heißt die Basis ↗

Bedeutung


  • Eine Potenz ist eine Kurzschreibweise für eine Malkette ↗
  • Die Basis (das unten) sagt, was in der Malkette steht.
  • Die Hochzahl sagt, wie oft die Basis in der Malkette steht.
  • (2/5)³ meint also: (2/5)·(2/5)·(2/5)

Berechnung


  • Brüche multiplizieren meint: Zähler mal Zähler und Nenner mal Nenner.
  • Also multipliziert man die Zähler oben alle durch. Das gibt den neuen Zähler.
  • Dann mulitpliziert man die Nenner unten alle durch. Das gibt den neuen Nenner.

Beispiel


  • (2/5)³ ist (2/5)·(2/5)·(2/5)
  • Zähler durchmultiplizieren: 2·2·2 gibt 8.
  • Nenner durchmultiplizieren gibt: 5·5·5 gibt 125.
  • (2/5)³ ist also gleich 8/125.

Hoch minus


  • Der Exponent kann auch eine negative Zahl sein.
  • Dann bildet man von der Basis erst den Kehrbruch.
  • Gleichzeitig lässt man das Minus im Exponenten weg.