1: Ableiten über Potenzregel

x² ⭢ 2x¹

x² gibt 2·x¹ oder kurz nur 2x: Exponent als Faktor runterziehen und eins kleiner machen. Beispiel: bei x³ ist der Exponent die Zahl 3. Diesen als Faktor (Malzahl) vor das x ziehen und dann den alten Exponenten eins kleiner machen: 3x². Als Regel: xʳ abgeleitet gibt r·xʳ⁻¹. Mehr unter => Potenzfunktion ableiten
2: Ableiten

Verfahren

Ableiten heißt f'(x) bilden: Ableiten im engeren Sinn heißt: Für einen Funktionsgraphen an einem Punkt die Steigung bestimmen. Im allgemeineren Sinn steht es dafür, die Ableitungsfunktion f'(x) zu bestimmen. Hier sind Regeln zur Bestimmung von f'(x) zusammengestellt. => Ganzen Artikel lesen …
3: Über

Räumlich | Sinnbildlich | Kombinatorik

Von unten aus gesehen weiter oben. Im übertragenen Sinn heißt über auch so viel wie: mit Hilfe von. In der Kombinatorik steht es für einen bestimmten Term mit Fakultäten. Die Fälle sind hier kurz vorgestellt. => Ganzen Artikel lesen …
4: Potenzregel

… in der Analysis gibt es mehrere => Potenzregeln
5: Aufleiten über Potenzregel

x² wird zu x³/3

Aus der gegebenen Grundfunktion f(x) = x² wird die Stammfunktion F(x) = x³/3. Statt x³/3 schreibt man auch ⅓·x³, was rechnerisch dasselbe ist. Der Querstrich / steht dabei für einen Bruchstrich und meint so viel wie geteilt durch [1]. Aufleiten heißt auch integrieren. Das ist hier kurz vorgestellt. => Ganzen Artikel lesen …
6: Ableiten über Kettenregel

Analysis

Die Funktion f(x)=(4x+2)³ gibt abgeleitet 4·3·(4x+2)². Die verwendete Regel war als Merkspruch: innere Ableitung (das gab hier die Zahl 4) mal äußerer Ableitung (das gab das 3·(4x+2)². Das wird hier kurz vorgestellt. => Ganzen Artikel lesen …
7: Ableiten über Produktregel

Anleitung

f(x) = u·v gibt abgeleitet f'(x) = u'·v + u·v': u ist dabei die linke Seite von einem Malzeichen und v ist die recht Seite von einem Malzeichen. u und v können ein x enthalten oder auch nicht. Hat man einen Funktionsterm, bei dem das x auf zwei Seiten von einem Malzeichen steht, dann hat man eine sogenannte Produktfunktion und muss dann zwingend die Produktregel benutzen. Das ist hier kurz vorgestellt. => Ganzen Artikel lesen …
Zur Startseite von Rhetos
Startseite
Impressum
© 2010-2023


Startseite Impressum Feedback © 2010-2023