|
1: Variable
x
Eine Variable ist ein Buchstabe, für den man unterschiedliche Zahlen, aber immer nur eine Zahl (oder allgemeiner: einen Wert [1]) einsetzen kann. Das Rechnen mit Variablen heißt Algebra. Hier steht mehr zu Variablen und was der Unterschied zu einer Unbekannten und einer Konstanten ist.
=> Ganzen Artikel lesen … |
|
|
2: Vahriable
… schreibe es ohne Dehnungs-h => Variable
|
|
|
3: Variablen
Mathematik
A, B und C für Punkte und a, b und c für Seitenlängen: Variablen sind Platzhalter für Zahlen, die man in einen Term oder Bezeichner einsetzen darf. Hier stehen einige typische Beispiele.
=> Ganzen Artikel lesen … |
|
|
4: Variabel
Ein anderes Wort für veränderlich
Im Beruf spricht man zum Beispiel von einem variablen Einkommen. In der Mathematik meint man mit variabel alles, was man innerhalb einer Betrachtung verändert. In Gleichungen nennt man Buchstaben wie x und y oft die Variablen. Diese Buchtaben sind Platzhalter und man kann verschiedene Zahlen in sie einsetzen. Weil sie für veränderbare Zahlen stehen, nennt man sie variabel.
=> Ganzen Artikel lesen … |
|
|
5: Abhängige Variable
Mathematik
In Gartenteichen kann man exotische Fische mit dem Namen Koi halten. Um ausrechnen zu können, wie viel Futter sie brauchen, muss man wissen, wie schwer sie sind. Um die Fische nicht durch Wiegen unter Stress zu setzen, kann man ihr Gewicht y auch aus der Länge x berechnen. Man sagt, das Gewicht y hängt ab von der Länge x:
=> Ganzen Artikel lesen … |
|
|
6: Ableiten mit zwei Variablen
… eine Funktion mit x und y, siehe unter => partiell ableiten
|
|
|
7: Basic256 Feldvariablen
Programmieren
Die Programmiersprache Basic256 kennt Feldvariablen, auch Arrays genannt. Hier steht eine kurze Einführung dazu.
=> Ganzen Artikel lesen … |
|
|
8: Brüche addieren mit Variablen
… siehe unter => Brüche mit Variablen Addieren
|
|
|
9: Brüche mit Variablen addieren
1/x + 3/y
Zum addieren von Brüchen die Variablen (Platzhalter) enthalten, benutzt die Formel: a/b + c/d = (ad+bc)/(bd). Das ist hier kurz mit einem Beispiel vorgestellt.
=> Ganzen Artikel lesen … |
|
|
10: Brüche mit Variablen subtrahieren
Anleitung
1/x - 3/y gibt zusammengefasst (y-3x)/(xy) - der Rechenweg dorthin ist hier kurz erklärt.
=> Ganzen Artikel lesen … |
|
|
11: Brüche subtrahieren mit Variablen
… 1/x minus 3/y gibt zusammengefasst (y-3x)/(xy) => Brüche mit Variablen subtrahieren
|
|
|
12: Feldvariable
Programmieren
A(4) ist eine typische Schreibweise für den vierten oder fünften Wert einer Feldvariablen, auch Array genannt. In Programmiersprachen kann man Variablen definieren, die mehrere gleichartige Daten enthalten kann. Eine solche Variable funktioniert dann wie eine Liste oder Tabelle mit Inhalten. Die Nummerierung beginnt oft mit dem Nullten Element, damit bezeichnet A(4) das fünfte Element. Siehe als Beispiel
=> Basic256 DIM
|
|
|
13: Fortran90 2D-Feldvariable-Character
Programmieren
Kommentiertes Beispielprogramm: Fortran90 ist eine Programmiersprache, die vor allem unter Physikern noch sehr verbreitet ist. Hier steht ein Programm zur Erklärung der Feldvariablen-Character.
=> Ganzen Artikel lesen … |
|
|
14: Fortran90 2D-Feldvariable-Integer
Kommentiertes Beispielprogramm
Kommentiertes Beispielprogramm: Fortran90 ist eine Programmiersprache, die vor allem unter Physikern noch sehr verbreitet ist. Hier steht ein Programm zur Erklärung der Feldvariablen-Integer.
=> Ganzen Artikel lesen … |
|
|
15: Funktion mit zwei unabhängigen Variablen
Definition
z=f(x,y): x und y sind die unabhängigen Variablen. z oder auch der Funktionswert ist die abhägige Variable. Der Graph wird oft als Fläche in einem xyz-Koordinatensystem dargestellt. Mehr unter
=> zweidimensionale Funktion
|
|
|
16: Funktion mit zwei Variablen ableiten
… Zum Beispiel f(x,y)=x²-y² => partiell ableiten
Eine Funktion mit zwei Variablen meint hier, dass es zwei unabhängige Variablen gibt. Ein Beispiel wäre f(x,y)=4x²-y. Der Graph einer solchen Funktion ist oft eine geschwungen (landschaftsartige) Fläche in einem dreidimensionalen Koordinatensystem. Solche Funktionen treten häufig in den Naturwissenschaften aber auch den Wirtschaftswissenschaften auf. Mehr dazu unter
=> partiell ableiten
|
|
|
17: Funktion ohne unabhängige Variable
… ist am ehesten eine => konstante Funktion
|
|
|
18: Funktion ohne Variable
… so etwas wie f(x)=Siehe unter => Funktionsterm ohne x
|
|
|
19: Funktionen mit zwei unabhängigen Variablen
x, y
Zum Beispiel f(x,y)=(y-x²)(y-2x²) oder auch f(x,y)=3xy-x³-y³: siehe mehr dazu unter
=> Funktion mit zwei unabhängigen Variablen
|
|
|
20: Funktionen mit zwei Variablen
Bedeutungen
y=f(x) hat insgesamt zwei Variablen. z=f(x,y) hat zwei unabhängige und eine abhängige Variable. Beide Fälle sind hier kurz vorgestellt.
=> Ganzen Artikel lesen … |
|
|
21: Funktionsgleichung ohne unabhängige Variable
… so etwas wie f(x)=Siehe unter => Funktionsterm ohne x
|
|
|
22: Funktionsgleichung ohne Variable
… bzw. ohne Variable überhaupt siehe unter => Funktionsterm ohne x
|
|
|
23: Funktionsterm ohne unabhängige unabhängige Variable
… so etwas wie f(x)=Siehe unter => Funktionsterm ohne x
|
|
|
24: Funktionsterm ohne Variable
… bzw. ohne Variable überhaupt siehe unter => Funktionsterm ohne x
|
|
|
25: Funktionsvariable
… siehe unter => Variablen
|
|
|
26: Gleichung ohne Variable
… so etwas wie 4=4 oder 0=1, Definition unter => Konstante Gleichung
|
|
|
27: Klammerrechnung ohne Variablen
Klammerrechnung nur mit Zahlen und Rechenzeichen
Variablen sind die Platzhalter. Meist werden die Variablen mit Buchstaben wie a, b oder x und y abgekürzt. Klammeraufgaben gibt es mit und ohne Variablen.
=> Ganzen Artikel lesen … |
|
|
28: Kürzen mit Variablen
… 4x³/x kann man kürzen zu 4x², mehr unter => => Malkette aus Brüchen kürzen
|
|
|
29: Laufvariable
Mathematik
Eine sogenannte Laufvariable ist ein Platzhalter für den man der Reihe nach verschiedene Werte einsetzt. Mit jedem eingesetzen Wert führt man dann eine eigene Rechnung oder Handlung durch. Laufvariablen trifft man zum Beispiel in verschiedenen Programmiersprachen oder auch in der Mathematik im Zusammenhang mit dem Summenzeichen Σ (großes Sigma) oder dem Produktzeichen ∏ (großes Pi) an.
=> Ganzen Artikel lesen … |
|
|
30: LGS drei Variablen
… siehe unter => LGS mit drei Gleichungen
|
|
|
31: LGS mit drei Variablen
… siehe unter => LGS mit drei Gleichungen
|
|
|
32: Lineares Gleichungssystem drei Variablen
… siehe unter => LGS mit drei Gleichungen
|
|
|
33: Lineares Gleichungssystem mit drei Variablen
… siehe unter => LGS mit drei Gleichungen
|
|
|
34: Logarithmusgleichung mit variabler im Logarithmus lösen
… mehr unter => Logarithmusgleichungen mit x im Logarithmus lösen
|
|
|
35: Logarithmusgleichung mit variabler im Numerus lösen
… mehr unter => Logarithmusgleichungen mit x im Numerus lösen
|
|
|