A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 9 Ω
Das Banner der Rhetos-Website: zwei griechische Denker betrachten ein physikalisches Universum um sie herum.

Mittelwertsatz

Differentialrechnung

Basiswissen


Definition des Mittelwertsatzes der Differentialrechnung: zwischen zwei beliebigen Punkten A und B einer überall differenzierbaren Funktion kann man immer eine Sekante bilden. Es gibt dann immer einen weiteren Punkt zwischen A und B, dessen Tangentensteiung gleich der Sekantensteigung von A und B ist. Das ist hier näher erklärt.

Schritt für Schritt



Zahlenbeispiel


Auf der Normalparabel, also dem Graph von f(x)=x² liegen zum Beispiel die zwei Punkte A(1|1) und B(2|4). Die Sekantentseigung von A nach B ist allgemein ∆y/∆x, hier also (4-1)/(2-1), also 3. Nach dem Mittelwertsatz muss es zwischen A und B noch mindestens einen weiteren Punkt mit dieser Steigung geben. Über die erste Ableitung findet man dann, dass der Punkt (1,5|2,25) genau diese geforderte Steigung 3 hat. Siehe auch Sekantensteigung ↗

Ein ähnlicher Satz für Integrale