Randwinkelsatz
Kreise
Basiswissen
Der Randwinkelsatz ist Lehrsatz der für bestimmte Winkel im Kreis. Dieser Satz gilt immer für alle Kreise. Er ist hier Schritt-für-Schritt erklärt.
Sehne
◦ Stelle dir einen Kreis vor.
◦ Stelle dir zwei Punkte A und B auf dem Kreis vor.
◦ Verbinde die zwei Punkte mit einer geraden Strecke.
◦ Diese Strecke heißt Sehne (von A nach B).
◦ Siehe auch => Kreissehne
Zentriwinkel
◦ Verbinde die Punkt A und B mit der Kreismitte M.
◦ Der Winkel bei M heißt Zentriwinkel (oder Mittelpunktswinkel)
◦ Siehe auch => Zentriwinkel
Randwinkel
◦ Nun denke dir irgendeinen Punkt P gegenüber der Sehne und auf dem Kreis.
◦ P liegt also nicht auf dem kürzeren der zwei Kreisbögen zwischen A und B.
◦ P liegt immer auf dem längeren der zwei Kreisbögen von A nach B.
◦ Verbinde nun P über gerade Linien jeweils mit A und mit B.
◦ Jetzt ist ein Winkel bei P entstanden.
◦ Das ist der Randwinkel (über der Sehne AB)
Eigenschaften
◦ Egal, wo P liegt, der Randwinkel bei P hat immer die gleiche Größe.
◦ Egal, wo P liegt, der Randwinkel bei P ist immer die Hälfte vom Zentriwinkel.
◦ Das gilt für jeden beliebigen Punkt P wie oben beschrieben.
Randwinkelsatz
◦ Diese Tatsachen zusammen heißen Randwinkelsatz.
Synonyme
=> Randwinkelsatz
=> Zentriwinkelsatz
=> Umfangswinkelsatz