
Vektoranalysis: Druckversion

1 Grundbegriffe

Die Vektoranalysis wendet die Methoden der Analysis
(Differential- und Integralrechnung) auf mathematische
Funktionen an, in denen Vektoren auftreten, die sich in
Abhängigkeit von Ort und Zeit verändern können. Die
wichtigsten Anwendungsgebiete der Vektoranalysis sind
physikalische Felder, insbesondere elektromagnetische
Felder.

1.1 Physikalische Felder

sind Teilgebiete des Raumes R3, in denen jedem Punkt
eindeutig ein Skalar oder ein Vektor (auch ein Tensor
oder Spinor) zugeordnet ist. Je nach Art der »Feldgröße«
spricht man von einem Skalarfeld oder einem Vektorfeld.
Skalare Feldgrößen sind z. B. Druck, Temperatur, Be-
leuchtungsstärke, Potential.
Vektorielle Feldgrößen sind z. B. elektrische und ma-
gnetische Feldstärke, magnetische Induktion, Strömungs-
geschwindigkeit.
Kraftfelder sind Felder, in denen z. B. eine elektrische
Ladung oder eine Masse eine Kraft erfährt.
Elektrodynamische Felder sind zeitlich veränderliche
elektrische und magnetische Felder, in denen Induktions-
vorgänge stattfinden.
Feldlinien sind (gedachte) Linien dergestalt, dass die
Vektoren der Feldgröße ihre Tangenten sind. Bekannte
Beispiele sind: Stromlinien, elektrische und magnetische
Feldlinien.

2 Vektorfunktionen

Zur Schreibweise: Im Text werden - der deutschen Norm
folgend - die Zeichen für Vektoren (V) kursiv und fett
geschrieben. In den mit TeX gesetzten Formeln sind die
Zeichen mit einem Pfeil versehen.
Für die Beschreibung eines Vektors durch seine kartesi-
schen Komponenten sind drei Schreibweisen üblich: Mit-
tels der Einheitsvektoren i, j, k auf der X-, Y- und Z-
Achse, als einzeilige Matrix und als einspaltige Matrix.

−→
V = Vx

−→
i +Vy

−→
j +Vz

−→
k =

(
Vx Vy Vz

)
=

Vx

Vy

Vz

 .

Ich werde diese Schreibweisen je nach Zweckmäßigkeit
abwechselnd verwenden.
Eine Funktion, bei der die abhängige Variable ein Vek-
tor ist, heißt Vektorfunktion. Im einfachsten Fall sind
die (skalaren) kartesischen Komponenten Vx, Vy, Vz des
Vektors Funktionen einer einzigen Variablen u (einpara-
metrige Vektorfunktion).

−→
V (u) =

(
Vx (u) Vy (u) Vz (u)

)
.

2.1 Ableitung einer Vektorfunktion

Analog zur Definition der Ableitung einer skalaren Funk-
tion ist die Ableitung einer VektorfunktionV(u) definiert:

d−→V
du = lim

∆u→0

∆
−→
V

∆u
= lim

∆u→0

−→
V (u+∆u)−

−→
V (u)

∆u
.

Durch Zerlegung des Vektors V in seine kartesischen
Komponenten folgt daraus:

d−→V
du = lim

∆u→0

(
∆Vx

−→
i +∆Vy

−→
j +∆Vz

−→
k

∆u

)
mit

∆Vx = Vx (u+∆u)− Vx (u) usw.

Daraus ergibt sich schließlich

d−→V
du =

dVx

du
−→
i +

dVy

du
−→
j +

dVz

du
−→
k .

Die Ableitung des Vektors V(u) nach u ist als Summe
dreier Vektoren wieder ein Vektor.
Ist insbesondere der Vektor V der vom Ursprung O des
Koordinatensystems ausgehende »Ortsvektor« −→r =

−−→
OP

eines Punktes P(x, y, z), so gilt

−→r = x
−→
i + y

−→
j + z

−→
k .

Bewegt sich der Punkt P irgendwie im Raum und sind
seine Koordinaten differenzierbare Funktionen der Zeit t,
so ist
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−→r = −→r (t) = x (t)
−→
i + y (t)

−→
j + z (t)

−→
k

und

d−→r
d t =

dx
d t

−→
i +

d y
d t

−→
j +

d z
d t

−→
k .

Nun sind aber dx/dt, dy/dt und dz/dt die Geschwindigkei-
ten der Projektionen des Punktes P auf die Achsen:

dx
d t = vx,

d y
d t = vy,

d z
d t = vz,

und daher

d−→r
d t = vx

−→
i + vy

−→
j + vz

−→
k .

Dieser Vektor aber ist nichts anderes als der Geschwin-
digkeitsvektor von P, also ist

d−→r
d t = −→v P .

Analog ergibt sich der Vektor a der Beschleunigung des
Punktes P:

−→a P =
d
d t

(d−→r
d t

)
=
d2 −→r
d t2 .

2.2 Differentiationsregeln

Analog beweist man folgende Regeln:
1. Die Ableitung des Produkts einer skalaren Funktion
f(u) und eines konstanten Vektors V

d
du
[
f (u)

−→
V
]
=
d f
du

−→
V .

2. Die Ableitung eines konstanten Vektors ist null.
3. Die Ableitung der Summe und Differenz zweier Vek-
toren:

d
du
[−→
V (u)±

−→
W (u)

]
=
d−→V
du ± d−→W

du .

4. Weitere Differentiationsregeln:

d
du
[
f(u)

−→
V (u)

]
=

df
du

−→
V +f

d
−→
V

du f(u): skalare Funktion,

d
du
(−→
V

−→
W
)
=
d−→V
du

−→
W +

−→
V
d−→W
du ,

d
du
(−→
V ×

−→
W
)
=
d−→V
du ×

−→
W +

−→
V × d−→W

du ,

d
du

−→
V [f (u)] =

d−→V
d f

d f
du .

2.3 Beispiel

Der Ortsvektor r eines Punktes P sei

−→r (φ) = (a cosφ) −→i + (a sinφ) −→j +
h

2π
φ
−→
k .

Wennφ alle reellen Zahlenwerte annimmt, durchläuft der
Punkt P eine Schraubenlinie mit dem Radius a und der
Ganghöhe h. Die Ableitung dieser Vektorfunktion ist der
Vektor

d−→r
dφ = − (a sinφ) −→i + (a cosφ) −→j +

h

2π

−→
k.

Setzen wir

φ = ω t ω = konst.

wobei t die Zeit sein soll, so hat P die konstante Winkel-
geschwindigkeit ω und den Geschwindigkeitsvektor

d−→r
d t =

d−→r
dφ

dφ
d t =

d−→r
dφ ω = (−aω sinωt)−→i +(aω cosωt)−→j +hω

2π

−→
k.

3 Anwendungen auf die Differenti-
algeometrie der Raumkurven

3.1 Tangente, Tangentenvektor, Tangen-
teneinheitsvektor einer Raumkurve

Analog zu den ebenen Kurven wird definiert:
Die Tangente an eine Raumkurve mit dem Ortsvektor
r(u) in einem ihrer Punkte P ist die Gerade durch P mit
derselben Richtung wie der Vektor (dr/du)P (das bedeu-
tet: die Vektorfunktion dr/du gebildet an der Stelle P).
Dabei ist u irgendeine Variable, durch die r beschrieben
wird.
Diese Definition wird sofort plausibel, wenn wir die Va-
riable u durch die Zeit t ersetzen. Dann ist (siehe oben):

d−→r
du =

d−→r
d t = −→v .
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Der Geschwindigkeitsvektor v gibt aber die momenta-
ne Bewegungsrichtung des Punktes P an, und das ist die
Richtung der Kurventangente.
Führen wir nun wieder die beliebige Variable u ein, dann
wird

d−→r
du =

d−→r
d t

d t
du = −→v d t

du
wobei dt/du lediglich ein skalarer Faktor ist, der an der
Richtung des Vektors v nichts ändert. Also hat auch der
Vektor d−→r

du die Richtung von v und damit die Richtung
der Tangente.
Für das Folgende brauchen wir den auf der Kurventan-
gente gelegenen Einheitsvektor. Er wird mit t bezeichnet.
Man findet ihn, indem man den Geschwindigkeitsvektor
durch seinen Betrag dividiert:

−→
t =

d−→r
d t∣∣∣ d−→rd t ∣∣∣ =

d−→r
d t
v

,

wobei v die Bahngeschwindigkeit des Punktes P ist. Ist r
als Funktion der Bogenlänge s der Kurve gegeben, wobei
s von einem beliebigen Punkt der Kurve aus gemessen
wird, dann kann man v durch ds/dt ersetzen:

−→
t =

d−→r
d t
d s
d t

=
d−→r
d t

d t
d s =

d−→r
d s .

3.2 Schmiegungsebene und Krümmung
einer Raumkurve

Es ist nützlich, sich zunächst die analogen Überlegungen
und Begriffe bei einer ebenenKurve zu vergegenwärtigen.
Dort liegen selbstverständlich auch alle Kurventangenten
in derselben Ebene, der Ebene der Kurve. Ändert sich

die Richtung der Tangente (ihrWinkel) auf derWeglänge
(Bogenlänge) Δs um den Wert Δ τ so ist die »mittlere
Krümmung« k⛻ auf der Strecke Δs

km =
∆τ

∆s

und die Krümmung der Kurve im betrachteten Punkt P

k = lim
∆s→0

∆τ

∆s
.

Unter dem Krümmungskreis der Kurve im Punkt P ver-
steht man den Kreis durch P, der dieselbe Steigung und
dieselbe Krümmung wie die Kurve in P hat. Der Radius
ρ dieses Kreises heißt Krümmungsradius der Kurve in P.
Es gilt

ρ =
1

k
.

Die Tangenten einer Raumkurve liegen nicht in derselben
Ebene und es gibt – im Gegensatz zu Flächen – im Punkt
P auch nicht nur eine Tangentialebene, sondern unend-
lich viele. Unter ihnen greifen wir die Ebene heraus,in
der der Tangenteneinheitsvektor t und der Vektor dt/ds
liegen. Der letztgenannte Vektor gibt nämlich die Rich-
tung an, in welcher sich der Vektor t in P dreht. Diese
Ebene heißt die Schmiegungsebene der Kurve in P.
Der in der Schmiegungsebene liegende Einheitsvektor,
der auf t senkrecht steht und dieselbe Richtung wie der
Vektor dt/ds hat, heißt Hauptnormaleneinheitsvektor n
der Kurve in P.
Hat ein Vektor v(u) eine konstante Länge v, so ist we-
gen v2 = v2 auch v2 = konst. Differenziert man die letzte
Gleichung nach u und benutzt dabei die Regel für die Dif-
ferentiation eines Skalarprodukts v·w mit w = v, so findet
man

d
du (−→v )

2
=

d
du (−→v · −→v ) = 2−→v d−→v

du = 0.

Wenn das Skalarprodukt zweier Vektoren v und dv/du
null ist und keiner der beiden Vektoren selbst null
ist (Nullvektor bzw. konstanter Vektor), dann müssen
die beiden Vektoren aufeinander senkrecht stehen. Dies
leuchtet auch unmittelbar ein: Wenn der Vektor dv/du ei-
ne Komponente in Richtung v hätte, dann würde sich die
Länge von v zugleich mit u verändern.
Dieses Ergebnis wenden wir auf den Tangenteneinheits-
vektor t einer Raumkurve an. Da die Länge von t konstant
ist, muss seine Ableitung dt/ds auf t senkrecht stehen.
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In der Abbildung liegen der Tangenten- und der Nor-
malenvektor in der Zeichenebene, die folglich mit der
Schmiegungsebene zusammenfällt. Die Kurve selbst da-
gegen verläuft im Allgemeinen links und rechts von P
außerhalb dieser Ebene.
Unter der mittleren Krümmung einer Kurve im Bereich
Δs versteht man den aufΔs bezogenenDrehwinkelΔτ der
Tangente. Ihr Grenzwert fürΔs gegen 0 heißt Krümmung
k der Kurve im Punkt P.

k = lim
∆s→0

∆τ

∆s

Ein in der Schmiegungsebene gelegener Kreis durch P
mit derselben Steigung und derselben Krümmung wie die
Raumkurve, heißt Krümmungskreis der Kurve. Sein Ra-
dius heißt Krümmungsradius ρ der Kurve in P. Da für
den Kreisbogen Δs (unabhängig von seiner Größe) stets
gilt

Δs = ρ Δ τ,

gilt für seine Krümmung

k =Δτ/Δs = 1/ρ

Zur Berechnung der Krümmung einer Kurve aus ihrem
Ortsvektor r(s) gehen wir wie folgt vor:

1. Berechnung von dt/ds:

d−→t
d s =

d−→t
d τ

d τ
d s =

d−→t
d τ

1

ρ
=
d−→t
d τ k

2. Berechnung von dt/dτ:

Es ist:

∆t

2
≈ sin ∆τ

2
=

∆τ

2
− 1

3!

(
∆τ

2

)3

+− · · ·

und

∆t

∆τ
≈ 2

∆τ
sin ∆τ

2
= 1− 1

3!

(
∆τ

2

)2

+− · · · ⇒ d t
d τ = lim

∆τ→0

∆t

∆τ
= 1

3. Damit ergibt sich:

∣∣∣∣∣d
−→
t

d s

∣∣∣∣∣ = k =
1

ρ
.

Da der Vektor dt/ds die Richtung des Normaleneinheits-
vektors n hat, ist

d−→t
d s =

d2 −→r
d s2 = k−→n =

1

ρ
−→n

Hieraus folgt durch Quadrieren und Wurzelziehen:

k =
1

ρ
=

√(d2 −→r
d s2

)2

=

√ (d2 x
d s2

)2

+

(d2 y
d s2

)2

+

(d2 z
d s2

)2

.

4 Integralrechnung mit Vektoren

In Integralen können Vektoren sowohl als Integrand (=
die zu integrierende Funktion) als auch als Differential
bei dem Integranden auftreten.
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1. Typ: Nur der Integrand ist ein Vektor
Ein typisches Beispiel ist das Zeitintegral der Kraft, das
in der Dynamik auftritt. (Dort ist es ein bestimmtes Inte-
gral; es genügt hier jedoch, nur unbestimmte Integrale zu
untersuchen.)∫ −→
F dt =

∫ (
Fx

−→
i + Fy

−→
j + Fz

−→
k
)
d t = −→

i
∫
Fx d t+

−→
j
∫
Fy d t+

−→
k
∫
Fz d t,∫ −→

F dt =
(∫

Fx d t
∫
Fy d t

∫
Fz d t

)
.

Das Ergebnis ist also, wie zu erwarten war, ein Vektor.
Anmerkung: Dass oben die Einheitsvektoren i, j, k wie
konstante Faktoren vor die Integrale gezogen werden dür-
fen, lässt sich wie folgt beweisen: Das Integralzeichen ist
das Symbol für den Grenzwert einer Summe. Konstan-
te Faktoren bei den Summanden können ausgeklammert
werden, auch wenn sie (konstante) Vektoren sind.
2. Typ: Integrand und Differential sind Vektoren
Ein Beispiel dafür ist das Wegintegral der Kraft, mit dem
die Arbeit berechnet wird.∫ −→
F d−→r =

∫ (
Fx Fy Fz

)
·
(
dx d y d z

)
=
∫
Fx dx+∫

Fy d y +
∫
Fz d z

DaF·dr ein Skalarprodukt ist, ergibt sich für das Ergebnis
des Integrals erwartungsgemäß auch ein Skalar.
Ein spezielles wichtiges Beispiel hierfür ist:∫ −→v d−→v =

∫
vx d vx +

∫
vy d vy +

∫
vz d vz = 1

2

(
v2x + v2y + v2z

)
+ C = 1

2v2+
C
Die Integration folgt hier formal derselben Regel wie bei∫
x dx .

Ein anderes interessantes Beispiel (unter Verwendung des
erst später erklärten Operators grad, dessen Bedeutung
hier erkennbar ist):∫
grad U d−→r =

∫ (
∂U
∂x

∂U
∂y

∂U
∂z

)
·
(
dx d y d z

)
∫
grad U d−→r =

∫ (
∂U
∂x

∂U
∂y

∂U
∂z

)
· (dx d y d z) =

=

∫ (
∂U

∂x
dx+

∂U

∂y
d y + ∂U

∂z
d z
)

=

∫
dU = U + C.

Erläuterung: Der Integrand im vorletzten Integral ist das
vollständige Differential dU der Funktion U = U(x, y, z).
3. Typ: Nur das Differential ist ein Vektor∫
U d−→v =

∫
U
(
d vx d vy d vz

)
= i
∫
U d vx + j

∫
U d vy + k

∫
U d vz.

Das Ergebnis ist ein Vektor.
Hier gibt es eine PDF-Version.

5 Skalare und vektorielle Felder
und Feldgrößen

Ein physikalisches Feld ist – wie eingangs schon erklärt
– ein Teilgebiet des Raumes, in welchem in jedem Punkt
eine eindeutig bestimmte skalare oder vektorielle physi-
kalische Größe (»Feldgröße« genannt) anzutreffen ist.
Bei Skalarfeldern ist die (skalare) FeldgrößeU eine ska-
lare Funktion des Ortsvektors r des betrachteten Punktes
P:

U = U(r) = U(x, y, z).

Beispiele für skalare Feldgrößen sind Druck und Tempe-
ratur in der Atmosphäre, das Gravitationspotential in der
Umgebung einer Masse (z. B. der Erde), das Potential
in der Umgebung eines elektrisch geladenen Körpers, die
Lautstärke in einem Schallfeld.
Bei Vektorfeldern ist die (vektorielle) Feldgröße V eine
Vektorfunktion von r:
V = V(r) = V(x, y, z).
Beispiele für vektorielle Feldgrößen sind die elektrische
und die magnetische Feldstärke, die Gravitationsfeldstär-
ke, die Geschwindigkeit von Gasen und Flüssigkeiten in
Strömungsfeldern.

5.1 Ein wichtiges Beispiel für ein Vektor-
feld und ein Skalarfeld

Die elektrische FeldstärkeE im Feld einer punktförmigen
elektrischen Ladung vom BetragQ, die sich inO befindet,
ist

E⃗(r⃗) =
1

4π ε0

Q

r2
r⃗.

Das Potential φ eines Punktes P in einem beliebigen elek-
trischen Feld ist definiert als die »ladungsbezogene Ar-
beit«W/q, die aufzuwenden ist, um die Ladung q aus un-
endlicher Entfernung zu dem Punkt P zu bringen. (Ein
Punkt eines Feldes besitzt nur dann ein definiertes Poten-
tial, wenn diese Arbeit vomWeg unabhängig ist, auf dem
die Ladung nach P gebracht wird. – Dieses Problem wird
später noch genauer untersucht.) Also:

Potential φ =
W

q
.

Diese Definition gilt analog auch für das Potential eines
Gravitationsfeldes, wobei lediglich q durch die Masse m
des bewegten Körpers zu ersetzen ist.
Für das oben beschriebene zentralsymmetrische elektri-
sche Feld, in dem –wie später gezeigt wird – jedemPunkt
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ein Potential zugeordnet werden kann, errechnet man die
Arbeit durch eine Integration:

W =

r∫
∞

F⃗ d s⃗.

Da in diesem Feld die Arbeit vom gewählten Weg un-
abhängig ist, denken wir uns die Ladung q einfach radi-
al nach innen bewegt, wobei dann Kraft- und Wegvektor
gleich- oder entgegengesetzt gerichtet sind. Allerdings ist
der Vektor ds dem Vektor dr entgegengesetzt gerichtet,
da die Bewegung in Richtung abnehmendem r erfolgt: ds
= - dr.
In einem Punkt mit der Feldstärke E erfährt die Ladung
q eine Kraft vom Betrag F = E q, also ist

W = −
r∫

∞

F d r = − q Q

4π ε0

r∫
∞

1

r2
d r =

q Q

4π ε0

∣∣∣∣1r
∣∣∣∣r
∞

=
q Q

4π ε0r
.

Damit erhalten wir für das Potential

φ =
W

q
=

Q

4π ε0r
=

Q

4π ε0

1√
x2 + y2 + z2

.

Da das Potential (definitionsgemäß) ein Skalar ist, ist das
Potentialfeld ein Skalarfeld.
Für r = konst. ist auch φ = konst. Die Punkte gleichen
Potentials liegen also auf einer Kugelfläche um O. Die
»Äquipotentialflächen« oder »Niveauflächen« dieses Fel-
des sind also Kugeln (siehe Abbildung). Das elektrische
Potential wird in Volt (V) gemessen.

Äquipotentialflächen einer Kugelladung

5.2 Anstieg und Steigung einer skalaren
Feldgröße

Wir begeben uns nun zu einem Punkt P(x, y, z) eines
Skalarfeldes mit der Feldgröße U(r) und fragen zunächst
nach dem Anstieg ΔU der Feldgröße auf der Strecke Δs
und dann nach der mittleren Steigung ΔU/Δs der Feld-
größe auf derselben Strecke. (Die Feldgröße könnte z. B.
die Temperatur, der Luftdruck oder das Potential eines
Feldes sein. )
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Dazu brauchen wir zunächst die Steigung der Feldgröße
in Richtung der drei Koordinatenachsen.
Die Differentialrechnung liefert für die Steigung der
Feldgröße U in Richtung der drei Koordinatenachsen im
Punkt P:

∂U

∂x
= lim

∆x→0

∆U

∆x
y, z konst.

∂U

∂y
= lim

∆y→0

∆U

∆y
x, z konst.

∂U

∂z
= lim

∆z→0

∆U

∆z
x, y konst.

DerAnstieg ΔU der Feldgröße U längs einer Strecke Δ s
= (Δx Δy Δz) ist dann - dies ist ebenfalls ein Ergebnis der
Differentialrechnung - für hinreichend kleine Δx, Δy, Δz

∆U ≈ ∂ U

∂ x
∆x+

∂ U

∂ y
∆ y +

∂ U

∂ z
∆ z,

und die mittlere Steigung ΔU/Δs der FeldgrößeU auf der
Strecke Δ s ist

∆U

∆s
≈ ∂U

∂x

∆x

∆s
+

∂U

∂y

∆y

∆s
+

∂U

∂z

∆z

∆s
.

Die Quotienten Δx/Δs, Δy/Δs, Δz/Δs sind die Richtungs-
kosinus des Vektors Δ s:

∆x

∆s
= cosα, ∆y

∆s
= cosβ, ∆z

∆s
= cos γ.

Sie sind vom Betrag Δs des Vektors Δs unabhängig und
bleiben auch für Δs gegen null unverändert. Sie sind die
skalaren Komponenten des Einheitsvektors eΔs, der die-
selbe Richtung hat wie Δ s:

−→e ∆−→s =
(
cosα cosβ cos γ

)
Damit wird

∆U

∆s
≈ ∂U

∂x
cosα+

∂U

∂y
cosβ +

∂U

∂z
cos γ.

Daraus ergibt sich für Δs gegen null die Steigung der Feld-
größe U in Richtung Δs:

dU
d s = lim

∆s→0

∆U

∆s
=

∂U

∂x

dx
d s +

∂U

∂y

d y
d s +

∂U

∂z

d z
d s

oder

dU
d s =

∂U

∂x
cosα+

∂U

∂y
cosβ +

∂U

∂z
cos γ.

5.3 Richtungsableitung und Gradient ei-
ner skalaren Feldgröße

Der soeben gefundene Term für die Steigung der Feld-
größe U in der durch den Vektor (cos α cos β cos γ) be-
schriebenen Richtung kann interpretiert werden als das
Skalarprodukt des Vektors

−→v =
∂U

∂x

−→
i +

∂U

∂y

−→
j +

∂U

∂z

−→
k

und des Vektors

−→e ∆−→s =
−→
i cosα+

−→
j cosβ +

−→
k cos γ.

Der Vektor v hat bemerkenswerte, für die Untersuchung
von Feldern sehr nützliche Eigenschaften, weshalb er ei-
nen eigenen Namen erhalten hat: Gradient U (grad U).
(»Gradient« ist ein aus einem lateinischen Stamm abge-
leitetes Kunstwort, das man etwa mit »Steigungszeiger«
übersetzen könnte.) Damit gilt für die so genannte Rich-
tungsableitung der Feldgröße U in der Richtung des
Vektors (cos α cos β cos γ)
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dU
d s = grad U ·−→e ∆−→s = grad U ·

(−→
i cosα+

−→
j cosβ +

−→
k cos γ

)
.

Die besonderen Eigenschaften des Vektors grad U erge-
ben sich so:
Das Skalarprodukt zweier Vektoren v und w ist gleich
dem Produkt ihrer Beträge v und w und dem Kosinus des
Winkels δ zwischen den beiden Vektoren:

−→v · −→w = v w cos δ.

Bei gegebenen Werten von v und w ist der Wert des
Skalarprodukts maximal (nämlich gleich u v), wenn δ =
0 ist. Die Richtungsableitung (= Steigung) der Feldgröße
U ist also dann am größten, wenn der Vektor eΔs (oder
der Vektor Δ s) dieselbe Richtung wie der Vektor grad U
hat. Anders herum gesagt:
Der Vektor grad U weist in die Richtung, in der die
Feldgröße U die größte Steigung hat (am stärksten
steigt).
Steht dagegen der Vektor eΔs auf dem Vektor grad U
senkrecht, dann ist dU/ds = 0. Das bedeutet, der Vek-
tor eΔs liegt in der Tangentialebene der Niveaufläche U
= konst. des betrachteten Punktes P. Daraus folgt:
Der Vektor grad U steht auf der Niveaufläche durch
den Punkt P senkrecht.
Ferner: Der Maximalwert der Steigung (oder der Rich-
tungsableitung) ist der Maximalwert des obigen Skalar-
produkts:

(dU
d s

)
max

= |grad U | ·
∣∣−→e ∆−→s

∣∣ = |grad U | .

Das bedeutet:Der Betrag des Vektors gradU ist gleich
demMaximalwert der Steigung der Feldgröße im be-
trachteten Punkt.
Beispiel: Gesucht ist der Gradient des Potentials φ einer
elektrischen Punkt- (oder Kugel-)ladung Q.
Für das Potential gilt, wie früher gezeigt wurde,:

φ(r) =
Q

4π ε0r
=

Q

4π ε0
√
x2 + y2 + z2

.

Die partiellen Ableitungen werden am einfachsten nach
der Kettenregel gebildet:

∂φ

∂x
=
dφ
d r

∂r

∂x
= − Q

4π ε0r2
x√

x2 + y2 + z2
= − Q

4π ε0r3
x usw.

grad φ = − Q

4π ε0r3

(
x
−→
i + y

−→
j + z

−→
k
)
= − Q

4π ε0r3
−→r = −−→

E .

5.4 Rechengesetze für Gradienten

Es seien U, U1 und U2 skalare Ortsfunktionen, und C
eine reelle Zahl. Dann gelten, wie man leicht zeigen kann,
folgende Rechengesetze:

grad C = 0

grad (CU) = CgradU
grad (U1 ± U2) = grad U1 ± grad U2

grad (U1 U2) = (grad U1)U2 + U1 grad U2

grad Un = nUn−1 grad U

grad f(U) =
df(U)

dU grad U

6 Potentialfelder

Die Physik lehrt, dass elektrostatische Felder und statio-
näre Gravitationsfelder - unabhängig von der Anzahl und
der Anordnung der Ladungen bzw. Massen, die das Feld
aufbauen - so genannte Potentialfelder sind. Das bedeu-
tet: Um eine Ladung q bzw. eineMassem aus unendlicher
Entfernung zu einem bestimmten Punkt P des Feldes zu
bringen, ist eine (positive oder negative) Arbeit aufzu-
wenden, die unabhängig von dem Weg ist, auf dem die
Ladung bzw. die Masse transportiert wird.
Da die aufzuwendende Arbeit proportional der Ladung
bzw. Masse ist, erhält man eine nur von der Lage des
Punktes P abhängige skalare Größe, wennman die Arbeit
durch die Ladung bzw. Masse dividiert. Diese Größe, al-
so die »ladungs- bzw. massebezogene Arbeit«, heißt das
Potential φ des Punktes P:

Potential φ(P ) = φ(−→r ) = W

q
bzw. W

m
.

6.1 Potential und Feldstärke

Der Vektor der Feldstärke ist definiert als die ladungs-
bzw. massebezogene Kraft, die eine Ladung q bzw. eine
Masse m in einem Punkt des Feldes erfährt:

Feldst Elektrische�arke −→
E =

−→
F

q
,

Gravitationsfeldst�arke −→g =

−→
F

m
.

Wegen der formalen Übereinstimmung der entsprechen-
den Gleichungen für das elektrische Feld und das Gravi-
tationsfeld und wegen der sich dadurch anbietenden Ver-
einfachung bezeichne ich im Folgenden die Feldstärke
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allgemein und neutral mit V. Die Größe q kann fortan
sowohl eine elektrische Ladung als auch eine »schwere
Ladung«, das heißt eine Masse, bedeuten.
In einem Punkt A des Feldes habe das Potential den Wert
φA, in einem Punkt B den Wert φB. Dann ist der Poten-
tialunterschied der beiden Punkte

∆φAB = φB − φA =
WB

q
− WA

q
=

∆WAB

q
.

Dabei ist ΔWAB die Arbeit, die aufzuwenden ist, um die
Ladung Q von A nach B zu transportieren. Für sie gilt:

∆WAB ≈
−→
F A ·∆−→r AB =

−→
F A · (−→r B −−→r A) ,

wobei FA die in A auf die Ladung wirkende Kraft sein
soll. Damit wird

∆φAB ≈
−→
F A ·∆−→r AB

q
.

Da die »arbeitende Kraft« der vom Feld auf die Ladung
ausgeübte »Feldkraft« FFₑ⛺⛴ entgegengesetzt gleich und
andererseits FFₑ⛺⛴/q gleich der Feldstärke V ist, folgt

∆φAB ≈ −−→
V A ·∆−→r AB =

= −
(
Vx

−→
i + Vy

−→
j + Vz

−→
k
)(

∆xAB
−→
i +∆yAB

−→
j +∆zAB

−→
k
)
=

= − (Vx∆xAB + Vy∆yAB + Vz∆zAB) ,

wobei Vx usw. die Komponenten des Vektors V an der
Stelle A sind.
Wählt man ΔrAB so, dass ΔyAB = ΔzAB = 0 ist, dann
wird daraus

∆φAB ≈ −Vx∆xAB und ∆φAB

∆xAB
≈ −Vx.

Lässt man B unbeschränkt gegen A rücken, so wird

lim
B→A

∆φAB

∆xAB
=

(
∂φ

∂x

)
A

= −Vx.

Analog findet man

(
∂φ

∂y

)
A

= −Vy und
(
∂φ

∂z

)
A

= −Vz.

Daraus folgt weiter (jetzt ohne Indices geschrieben):

∂φ

∂x

−→
i +

∂φ

∂y

−→
j +

∂φ

∂z

−→
k = −Vx

−→
i −Vy

−→
j −Vz

−→
k = −

−→
V .

Der Term auf der linken Seite aber ist der Vektor grad φ.
Daher gilt für jedes beliebige Potentialfeld

grad φ = −
−→
V .

Umgekehrt gelesen:
Der Feldstärkevektor eines jeden Potentialfeldes ist
gleich dem negativen Gradienten des Potentials.

6.2 Verschiebungsarbeit in einem Potenti-
alfeld

In einem Potentialfeld werde eine Ladung q gegen die
Kraft des Feldes von A nach B verschoben. Die dazu auf-
zuwendende Arbeit ist

W =

B∫
A

−→
F · d−→r

und wegen

−→
F = −q

−→
V = q grad φ

W = q

B∫
A

grad φ · d−→r

= q

B∫
A

(
∂φ

∂x

−→
i +

∂φ

∂y

−→
j +

∂φ

∂z

−→
k

)(
dx−→i + d y−→j + d z−→k

)

= q

B∫
A

(
∂φ

∂x
dx+

∂φ

∂y
d y + ∂φ

∂z
d z
)

= q

B∫
A

dφ = q (φB − φA) .

(Der Integrand ist das vollständige Differential dφ des nur
vom Ort abhängigen Potentials φ = φ(x, y, z).)
Also:

W =

B∫
A

−→
F · d−→r = q (φB − φA) .

Die ArbeitW hängt also nur vom Potential des Anfangs-
und Endpunktes des Weges ab, nicht aber vom Verlauf
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des Weges; das entsprechende Linienintegral ist »wegun-
abhängig«.
Wird die Ladung q zunächst auf einem beliebigen Weg
von A nach B gebracht und danach auf einem anderen
Weg von B zurück nach A, so ist

WAB = q (φB − φA) und WBA = q (φA − φB)

und daher

WABA = WAB +WBA = 0.

Das heißt: Das Linienintegral wird null, wennman es über
einen geschlossenen Weg bildet.

∮
F · d r = 0

Zusammenfassung:
In einem Vektorfeld,

• zu dem ein Potentialfeld gehört,

• oder, was dasselbe ist, dessen Feldvektor der nega-
tive Gradient eines Skalarfeldes ist,

ist das Arbeitsintegral über einen geschlossenen Weg
gleich null.
Das bedeutet, dass man durch Herumführen einer La-
dung auf einem geschlossenen Weg weder Arbeit gewin-
nen kann noch Arbeit investieren muss.
Ein solches Vektorfeld und die in ihm auf eine Ladung
ausgeübte Kraft heißen konservativ.
Welche Bedingungenmuss der FeldvektorV erfüllen,
damit er der negative Gradient eines Skalarfeldesmit
der Feldfunktion U(x, y, z) sein kann?
Wenn

V ≡
(
Vx Vy Vz

)
= − grad U ≡ −

(
∂U
∂x

∂U
∂y

∂U
∂z

)
sein soll, muss

Vx =
∂U

∂x
, Vy =

∂U

∂y
, Vz =

∂U

∂z

sein. Diese Forderung ist keineswegs selbstverständlich
oder trivial, denn Vx, Vy und Vz können im Allgemeinen
drei von einander völlig unabhängige Funktionen sein.
Nach dem Satz von SCHWARZ muss

∂
(
∂U
∂x

)
∂y

≡ ∂2U

∂x ∂y
=

∂
(

∂U
∂y

)
∂x

≡ ∂2U

∂y ∂x
,

∂2U

∂y ∂z
=

∂2U

∂z ∂y

und

∂2U

∂z ∂x
=

∂2U

∂x ∂z

sein. Das heißt: Bei der Bildung der zweiten partiellen
Ableitung nach verschiedenen Variablen ist die Reihen-
folge beliebig.
Auf unser Problem angewendet, bedeutet das: Wenn der
FeldvektorV der negative Gradient eines Skalarfeldesmit
der Feldfunktion U sein soll, muss

∂Vx

∂y
=

∂Vy

∂x
,

∂Vy

∂z
=

∂Vz

∂y
und ∂Vz

∂x
=

∂Vx

∂z

sein. Dann und nur dann ist (Vx dx + Vy dy + Vz dz) das
vollständige Differential dU einer Funktion U, und nur
dann kann daraus durch Integration eine Funktion U be-
stimmt werden, deren negativer Gradient dann der Vek-
tor V ist. (Und nur dann ist auch der Wert des Arbeitsin-
tegrals vom Weg unabhängig.)
Später wird sich zeigen, dass die oben beschriebene Be-
dingung identisch ist mit der Forderung, dass das Feld mit
dem Feldvektor V wirbelfrei ist, (d. h., dass überall rot V
= 0 ist.)
Beispiel:
Der Feldvektor

−→
V =

1

r3
−→r =

1

(x2 + y2 + z2)
3
2

(
x y z

)
erfüllt – wie man leicht durch Rechnung bestätigen kann
- die oben beschriebene »Integrabilitätsbedingung«, und
es ist



7.1 Vorbereitende Betrachtungen: Fluss, Schüttung, Quelldichte 11

U =
1

r
+ C =

1√
x2 + y2 + z2

+ C.

Hier gibt es eine PDF-Version.

7 Die Divergenz eines Feldvektors

7.1 Vorbereitende Betrachtungen: Fluss,
Schüttung, Quelldichte

Gegeben sei ein »Strömungsfeld« mit dem Feldvektor
v(r), wobei v die Geschwindigkeit einer Flüssigkeit ist.
Stellen wir uns ein von einem Drahtrahmen umgrenztes
ebenes Flächenstück vomGrößenwertA vor, das so in die
Flüssigkeit eintaucht, dass es auf der zunächst als homo-
gen angenommenen Strömung senkrecht steht.

Dann strömt in der Zeitspanne Δt das Flüssigkeitsvolu-
men ΔV = v·Δt·A durch den Rahmen. Der Quotient aus
diesem Volumen und der Zeitspanne Δt heißt der Fluss
Φ der Strömung (oder auch – nicht ganz exakt, aber ge-
bräuchlich - der FlussΦ des Feldvektors v) durch das Flä-
chenstück:

Fluss Φ = ∆V
∆t = v∆t A

∆t = v A .

Der Fluss hat demnach die Dimension Volumen/Zeit
=Länge3/Zeit.
Steht das Flächenstück auf der Strömungsrichtung nicht
senkrecht, dann ist

∆V = v∆t A cosφ,

wobei φ derWinkel zwischen demGeschwindigkeitsvek-
tor v und dem auf der Fläche senkrecht stehenden Flä-
chenvektor A ist.

Dann ist der Fluss durch das Flächenstück

Φ = v A cosφ = v · A ,

wobei v·A das Skalarprodukt der Vektoren v und A ist.
Ist schließlich das betrachtete Flächenstück nicht eben,
oder ist das Strömungsfeld nicht homogen, dann denken
wir uns die Fläche in hinreichend kleine Teilstücke vom
Größenwert ΔA zerlegt und den Flächenvektor ΔA in der
Mitte eines jeden Teilstücks errichtet. Jeder dieser Flä-
chenvektoren wird dann skalar mit dem Geschwindig-
keitsvektor multipliziert, der dem Fußpunkt des Flächen-
vektors zugeordnet ist. Für den FlussΦ durch die gesamte
Fläche A gilt dann:

Φ ≈
∑−→v ·∆

−→
A .

Denkt man sich nun die Anzahl der Teilflächen unbe-
grenzt wachsend, wobei ΔA gegen null geht, dann strebt
diese Summe einem Grenzwert zu, welcher der Fluss der
Strömung (oder, wie man etwas nachlässig sagt, der Fluss
des Vektors v ) durch die Fläche A ist und durch ein Flä-
chenintegral dargestellt wird:

ΦA = lim
∆A→0

∑−→v ·∆
−→
A =

∫
A

−→v d−→A .

Dieser Begriff des Flusses wird in der Physik auch auf
andere Vektorfelder übertragen, vor allem auf elektri-
sche und magnetische Felder. Dies mag zunächst etwas
befremden, aber man kann ja – als Hilfe für die Vor-
stellung - jeden beliebigen Feldvektor als den Geschwin-
digkeitsvektor einer Flüssigkeitsströmung interpretieren.
Man muss dann lediglich, wann immer vom Fluss eines
Feldvektors die Rede ist, sich vergegenwärtigen, dass da-
mit eigentlich der Fluss einer »virtuellen Flüssigkeit« ge-
meint ist, deren Geschwindigkeitsvektor der betrachtete
Feldvektor ist. Dazu das folgende Beispiel.
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Der »Fluss des Feldvektors«

−→
E =

Q

4π ε0r3
−→r

des zentralsymmetrischen Feldes einer Punkt- oder Ku-
gelladung mit dem Mittelpunkt in O durch eine konzen-
trische Kugelfläche mit dem Radius R ist

Φ =

∫
A

−→
E · d−→A =

∫
A

E · dA =
Q

4π ε0R2

∫
A

dA =
Q

4π ε0R2
4πR2 =

Q

ε0
.

(Hinweis: Der Feldvektor steht überall auf der Kugelflä-
che senkrecht.)
Also: Wenn E der Geschwindigkeitsvektor eines Strö-
mungsfeldes wäre, betrüge der Fluss der Flüssigkeit durch
jede zur Ladung Q konzentrische Kugelfläche Q/ε0. Der
Fluss ist der Ladung also proportional, und fürQ = 0 wäre
auch Φ = 0. Demnach könnte man die Ladung Q als die
»Quelle« des Feldes der virtuellen Flüssigkeit betrachten.
Für Q < 0 wäre auch Φ < 0. Dies wäre so zu interpretie-
ren: Der Geschwindigkeitsvektor ist - wie die Feldlinien
des Feldes – nach innen gerichtet und bildet mit den Flä-
chennormalen der Kugel überall den Winkel 180°, wes-
halb das Skalarprodukt E·dA = - E dA ist. Die negative
Ladung ist dann die »Senke« (= Gegenteil einer Quelle)
des Feldes.
Das ErgebnisΦ = Q/ε0 gilt übrigens, wie sich zeigen lässt
und was auch durchaus plausibel erscheint, für jede be-
liebige, die Ladung Q umhüllende Fläche.
Zur Vereinfachung betrachte ich im Folgenden wieder ei-
nen »echten« Geschwindigkeitsvektor v eines Strömungs-
feldes, jedoch gelten die Betrachtungen und ihre Ergeb-
nisse für jedes beliebige Vektorfeld und sein virtuelles
Strömungsfeld.
Integriert man das Skalarprodukt v·dA über eine ge-
schlossene Fläche (»Hülle«), so ist der Wert des »Hül-
lenintegrals« gleich dem Fluss (Volumen/Zeit), der durch
die Hülle nach außen tritt. Dieser muss gleich der »Schüt-
tung« S (= Ergiebigkeit) aller innerhalb der Hülle liegen-
den Quellen sein, wobei die Senken einen negativen Bei-
trag zur Schüttung liefern:

∮
A

−→v · d−→A = S =
∑

Si.

Betrachten wir nun ein Raumgebiet vom Volumen ΔV.
Die Schüttung aller Quellen in diesemRaumgebiet sei ΔS.
Der Quotient ΔS/ΔV ist dann die »mittlere Quelldichte«
in diesem Gebiet:

Mittlere Quelldichte ∆S

∆V
=

1

∆V

∮
A

−→v · d−→A .

7.2 Die Divergenz eines Feldvektors

Lässt man nun die Hüllfläche auf einen Punkt P schrump-
fen und somit ΔV gegen null gehen, so ist der Grenzwert

lim
∆V→0

∆S

∆V
= lim

∆V→0

1

∆V

∮
A

−→v · d−→A

die Quelldichte des Feldvektors (eigentlich: des Strö-
mungsfeldes, dessen Geschwindigkeitsvektor v ist) in
dem Punkt P, auf den die Hülle geschrumpft ist. Sie wird
als die Divergenz des Vektors v im Punkt P bezeichnet:

(div −→v )P = lim
∆V→0

∆S

∆V
= lim

∆V→0

1

∆V

∮
A

−→v · d−→A .

Zur Berechnung der Divergenz aus dem Feldvektor v =
(vx vy vz) betrachten wir einen Quader mit den Seiten Δx,
Δy, Δz, dessen Mittelpunkt der Punkt P (x, y, z) ist.

Die Flächennormalen auf den Seitenflächen sind die Ein-
heitsvektoren in Achsenrichtung: i, j, k sowie -i, -j, -k. (j
und der dazu gehörige Feldvektor sind nicht eingezeich-
net.)
Die Flüsse durch die einzelnen Seitenflächen sind:



7.4 Beispiele 13

∆Φ1 = i·v(x+∆ x
2 , y, z)∆y ∆z = (vx)(x+∆x

2 , y , z) ∆y ∆z,

∆Φ2 = −i ·v(x−∆x
2 , y , z)∆y ∆z = − ( vx)(x−∆x

2 , y , z) ∆y ∆z,

Der gesamte Fluss ΔΦ durch die Flächen des Quaders ist
die Summe aus diesen sechs Flüssen. Er entspricht dem
Wert des Hüllenintegrals in der Definition der Divergenz.
Von den sechs Summanden lassen sich je zwei wie folgt
zusammenfassen:

∆Φ1 +∆Φ2 =
[
(vx)(x+∆x

2 , y , z) − (vx)(x−∆x
2 , y , z)

]
∆y ∆z

=
(vx)(x+∆x

2
, y , z)

−(vx)(x−∆x
2

, y , z)

∆x ∆x∆y∆z

Der Bruch auf der rechten Seite ist der »partielle Diffe-
renzenquotient« der Funktion vx für y = konst. und z =
konst. Für Δx gegen 0 wird daraus die partielle Ableitung
von vx nach x. Zusammen mit den übrigen vier Summan-
den ergibt sich dann

div −→v = lim
∆V→0

1

∆V

∮
A

−→v d−→A = lim
∆V→0

∆x∆y∆z

∆V

(
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

)

und mit Δx Δy Δz = ΔV

div −→v =
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

.

7.3 Rechengesetze für Divergenzen

div −→
C = 0

−→
C : konstanter Vektor

div c−→v = c div −→v c : relle Zahl
div (−→v +−→w ) = div −→v + div −→w

div (U −→v ) = U div −→v +−→v grad U U = U (x, y, z)

div (−→v ×−→w ) = −→w rot −→v −−→v rot −→w

7.4 Beispiele

1. Gegeben ein Vektorfeld mit dem Feldvektor v(r) = r.
Der Feldvektor ist also radial nach außen gerichtet, seine
Länge ist gleich der Länge des Ortsvektors des betreffen-
den Punktes. Dann ist:

div −→r = div
(
x y z

)
=

∂ x

∂ x
+

∂ y

∂ y
+

∂ z

∂ z
= 3.

Wir verifizieren an diesem Beispiel den GAUSS-
Integralsatz

∫
V

div −→v dV =

∮
A

−→v d−→A

an einer Kugel vom Radius R um den Ursprung.
In Worten lautet der GAUSS-Integralsatz: Die Ergiebig-
keit der Quellen in einem Raumgebiet V ist gleich dem
Fluss durch dessen Hüllfläche.
Der Fluß Φ durch ihre Oberfläche ist Φ = 4 π R2 R = 4
π R3.
Die Ergiebigkeit S aller innerhalb der Kugel liegenden
Quellen ist S = V div r = 3 V = 4 π R3.
2. Es sei v(r) = r/r.
Der Feldvektor ist also radial nach außen gerichtet und
hat die konstante Länge 1. Dann ist:

div
−→r
r

= div 1
r

(
x y z

)
,

und

∂

∂x

x

r
=

r − x ∂r
∂x

r2
.

Die partielle Ableitung ∂r
∂x

berechnet man am einfachsten durch implizite Ableitung
aus:

r2 = x2+y2+z2 : 2 r ∂r = 2x ∂x ⇒ ∂r

∂x
=

x

r
.

Analog findet man

∂r

∂y
=

y

r
und ∂r

∂z
=

z

r
.

Damit ergibt sich schließlich:

div
−→r
r

=
3r − x2+y2+z2

r

r2
=

2

r
.

Test:
Der Fluss des Vektors v = r/r durch die Oberfläche einer
Kugel um O mit dem Radius R ist

ΦK = 4πR2 · 1 = 4πR2.

Das Volumen einer Kugelschale vom Radius r und der
Dicke dr ist

dV = 4πr2 d r
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Die Ergiebigkeit der in der Kugelschale liegendenQuellen
ist

dS = dV · div −→v = 4πr2 d r2
r
= 8π r d r.

Die Ergiebigkeit S der Quellen in einer Kugel vomRadius
R ist dann

S =

R∫
0

8π r d r =

[
8π

r2

2

]R
0

= 4πR2 = ΦK

3. Dieses Beispiel ist von ganz anderer Natur als die vor-
angegangenen. Hier ist kein Feld vorgegeben, dessen Ei-
genschaften untersucht werden sollen, sondern eine phy-
sikalische Anordnung, ein sehr langer, elektrisch gelade-
ner Leiter, dessen Feld gesucht ist.

Wir betrachten ein Leiterelement Δl und eine Kreisschei-
be mit Radius R um dieses Leiterelement. Die im Leiter-
element vorhandene elektrische Ladung sei Δq, die »La-
dungsdichte« ρ also Δq/Δl. Weiter oben haben wir gese-
hen, dass der von einer Ladung Q erzeugte Fluss Φ des
Vektors E = gleich Q/ε0 ist.
Der von der Ladung Δq erzeugte Fluss ΔΦ des Vektors E
verlässt die Kreisscheibe nur an deren senkrechter Um-
randung, welche die Fläche ΔA = 2πR Δl hat. Da der
Fluss auf der Umrandung stets senkrecht steht, gilt für
die Feldstärke am Rand

ER =
∆Φ

∆A
=

∆q

ε02πR∆l
=

ρ

ε02πR
mit ρ =

∆q

∆l

Da E radial nach außen gerichtet ist, ist

−→
E =

ρ

ε02πr2
−→r .

Wir berechnen nun noch div E, die außerhalb des Leiters
überall null sein muss:

div −→
E = div ρ

ε02π

−→r
r2

,

div
−→r
r2

= div x
−→
i + y

−→
j

r2
=

r2 − x 2r ∂r
∂x + r2 − y 2r ∂r

∂y

r4
,

div
−→r
r2

=
2r2 − 2r

(
xx

r + y y
r

)
r4

=
2r2 − 2r2

r4
= 0.

Hier gibt es eine PDF-Version.

8 Die Rotation eines Feldvektors

8.1 Einleitung - Zirkulation und Wirbel
eines Vektors

Vorbemerkung: Diese Einleitung ist etwas unkonventio-
nell. Sie versucht, die Begriffe und Zusammenhänge an-
schaulich werden zu lassen und dem Anfänger dadurch
die Chance zu bieten, sie wirklich zu verstehen.
Im Kapitel »Verschiebungsarbeit ...« (Vektoranalysis:
Teil II) wurde gezeigt, dass das Linienintegral über das
Skalarprodukt v·ds gleich null ist,
- wenn das Integral sich über eine geschlossene Kurve er-
streckt und
- wenn ein Potentialfeld vorliegt, d. h. wenn der Vektor v
der Gradient eines Skalarfeldes ist.
Letzteres ist jedoch keineswegs immer der Fall, und auch
in der Physik gibt es wichtige Felder, die diese Bedingung
nicht erfüllen.
Ein Beispiel dafür ist das magnetische Feld eines unend-
lich langen Leiters (Stromstärke I).
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Der Leiter ist von konzentrischen kreisförmigen Feldlini-
en umgeben; der Vektor H der Feldstärke steht auf dem
Radius ρ senkrecht, für seinen Betrag H gilt:

H =
I

2π ρ

Es lohnt sich, dieses Feld etwas genauer zu betrachten und
einige Überlegungen anzustellen.

1. Bewegt man einen Magnetpol (linkes Bild) aus sehr
großer (unendlicher) Entfernung radial zu irgendeinem
Punkt P hin, so ist dabei keine (positive oder negative)
Arbeit zu erbringen. Erfolgt die Bewegung jedoch schräg,
so hat der Weg eine Komponente in Richtung des Feldes,
und es ist daher Arbeit aufzuwenden. Das Linienintegral

P∫
∞

−→
H · d−→s

hat keinen bestimmten, vom Weg unabhängigen Wert.
Daher kann man dem Punkt P kein bestimmtes Potential
zusprechen.
2. Betrachten wir eine Linie, die eine viereckige Fläche
umfasst, deren Seiten radial bzw. tangential verlaufen.
Man kann sich leicht davon überzeugen, dass das Linien-
integral über den geschlossenen Umlauf den Wert null
hat. (Wäre dagegen der Betrag der Feldstärke z. B. pro-
portional 1/ρ2, wäre das nicht so.)
3. Bei einem geschlossenen Umlauf, der den Leiter um-
schlingt (rechtes Bild), hat das Linienintegral dagegen –
unabhängig vom Weg - den Wert I (Stromstärke). Dies
zeigt, dass das Linienintegral über eine geschlossene Kur-
ve eine besondere Bedeutung haben kann. Darum wollen
wir uns genauer mit ihm befassen.
Definition: Unter der Zirkulation Γ eines Vektors v längs
einer geschlossenen Kurve K versteht man das Linienin-
tegral des Vektors längs dieser Kurve:

Γ =

∮
K

−→v · d−→s

Beispiel: Wie oben gezeigt wurde, ist die Zirkulation des
Feldstärkevektors H längs einer Feldlinie des Feldes ei-
nes unendlich langen Leiters gleich der Stromstärke I im
Leiter. Umfasst dagegen die Kurve K den Leiter nicht, ist
die Zirkulation null.
Im Allgemeinen wird die Zirkulation auch von der um-
laufenen Fläche A abhängen. Um deren Einfluss auszu-
schalten, dividiert man die Zirkulation durch die Fläche
und betrachtet die Größe Γ/A.
Beispiel: Bei dem oben beschriebenen Feld ist, wenn man
eine Feldlinie vom Radius ρ umläuft,

Γ

A
=

I

2πρ
2πρ

1

ρ2π
=

I

ρ2π
.

Der Quotient Γ/A nimmt also mit abnehmendem Radius
ρ immer mehr zu und erreicht am Umfang des Leiters
(Radius a) denWert der Stromdichte j = I/π a2 im Leiter.
Betrachtet man die Zirkulation ΔΓ des Feldvektors v
längs der Umrandung einer kleinen Fläche ΔA und denkt
sich diese dann auf einen Punkt P schrumpfend, dann
wird der Quotient ΔΓ/ΔA dabei im Allgemeinen einem
Grenzwert zustreben. Diesen Grenzwert nenne ich den
Wirbel w des Vektors v in P:

wP = lim
∆A→0

∆Γ

∆A
= lim

∆A→0

∮
∆A

−→v d−→s

∆A
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Beispiel: Lässt man bei dem oben betrachteten Feld den
Radius ρ des Kreises gegen null gehen, also auf den Lei-
termittelpunkt hin schrumpfen, so wird für den Stromfa-
den von punktförmigem Querschnitt der Wirbel w = j.

8.2 Berechnung des Wirbels – Die Rotati-
on

Es soll nun der Wirbel in einem Punkt einer gegebenen
Fläche berechnet werden.
In einem Raumgebiet, in dem durch eine Funktion v =
v(r) ein Vektorfeld definiert ist, befinde sich ein Flächen-
stück.

Durch einen Punkt P nahe an der Fläche legen wir ein
kleines Koordinatensystem, dessen Achsen parallel zu
den entsprechenden Achsen des großen Koordinatensys-
tems sind. Die Ebenen des kleinen Koordinatensystems
schneiden aus der Fläche ein kleines Flächenstück her-
aus, das wir durch ein ebenes Dreieck annähern.

Die Abschnitte auf den Achsen seien 2Δx, 2Δy, 2Δz.
Die Seitenmitten des Dreiecks sind dann

A (∆x, ∆y, 0) ; B (0, ∆y, ∆z) ; C (∆x, 0, ∆z) ;

und seine Seitenvektoren

∆−→a = −2∆x
−→
i + 2∆y

−→
j ,

∆
−→
b = −2∆y

−→
j + 2∆z

−→
k ,

∆−→c = 2∆x
−→
i − 2∆z

−→
k .

Zur (zunächst) angenäherten Berechnung des Linieninte-
grals über die drei Seiten multiplizieren wir den jeweili-
gen Seitenvektor skalar mit demWert, den der Feldvektor
v in der Seitenmitte hat:

∑
∆

−→v · d−→s ≈ −→v A ·∆−→a +−→v B ·∆
−→
b +−→v C ·∆−→c .

Für die Vektoren vA, vB und vC gilt:

−→v A ≈ −→v P +

(d−→v
d s

)
PA

· (∆s)PA ,

−→v B ≈ −→v P +

(d−→v
d s

)
PB

· (∆s)PB ,

−→v C ≈ −→v P +

(d−→v
d s

)
PC

· (∆s)PC .

Der Index PA bedeutet:
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bei der Richtungsableitung dv/ds dass diese an der Stelle
P und in der Richtung PA zu bilden ist,
bei Δs, dass damit die Strecke Δs = PA gemeint ist.
Zur Berechnung werden die drei »Ungefährgleichungen«
in ihre Komponenten zerlegt:

(vx)A ≈ (vx)P+
∂vx
∂x

∆x+
∂vx
∂y

∆y+
∂vx
∂z

∆z (∆z = 0)

Dabei sind – wie auch im Folgenden – alle partiellen Ab-
leitungen an der Stelle P zu bilden.
Ferner ist:

(vy)A ≈ (vy)P+
∂vy
∂x

∆x+
∂vy
∂y

∆y+
∂vy
∂z

∆z (∆z = 0)

(vz)A ≈ (vz)P+
∂vz
∂x

∆x+
∂vz
∂y

∆y+
∂vz
∂z

∆z (∆z = 0)

Analoges gilt für die Komponenten von vB und vC.
Wenn man die zusammengehörigen Komponentenglei-
chungen wieder zu einer Vektorgleichung zusammen-
fasst, erhält man:

−→v A ≈ −→v P +


∂vx

∂x ∆x+ ∂vx
∂y ∆y + 0

∂vy

∂x ∆x+
∂vy
∂y ∆y + 0

∂vz

∂x ∆x+ ∂vz
∂y ∆y + 0

,

−→v B ≈ −→v P +

0 + ∂vx

∂y ∆y + ∂vx

∂z ∆z

0 +
∂vy

∂y ∆y +
∂vy

∂z ∆z

0 + ∂vz
∂y ∆y + ∂vz

∂z ∆z

,

−→v C ≈ −→v P +

∂vx

∂x ∆x+ 0 + ∂vx
∂z ∆z

∂vy

∂x ∆x+ 0 +
∂vy
∂z ∆z

∂vz

∂x ∆x+ 0 + ∂vz
∂z ∆z

.

Damit ergibt sich:
−→v A∆

−→a ≈ −→v P∆
−→a +

(
∂vx

∂x ∆x+ ∂vx
∂y ∆y

)
(−2∆x)+(

∂vy

∂x ∆x+
∂vy
∂y ∆y

)
2∆y,

−→v B∆
−→
b ≈ −→v P∆

−→
b +

(
∂vy

∂y ∆y +
∂vy
∂z ∆z

)
(−2∆y)+(

∂vz

∂y ∆y + ∂vz

∂z ∆z
)
2∆z,

−→v C∆
−→c ≈ −→v P∆

−→c +
(
∂vx

∂x ∆x+ ∂vx

∂z ∆z
)
2∆x +(

∂vz

∂x ∆x+ ∂vz

∂z ∆z
)
(−2∆z) .

Die Summe Σ dieser drei Skalarprodukte ist

∑
≈ −→v P

(
∆−→a +∆

−→
b +∆−→c

)
+(

∂vy

∂x − ∂vx

∂y

)
2∆x∆y +(

∂vz

∂y − ∂vy

∂z

)
2∆y∆z+

+

(
∂vx
∂z

− ∂vz
∂x

)
2∆x∆z.

Dabei sind alle partiellen Ableitungen im Punkt P zu bil-
den.
Der erste Summand ist null, da die Summe der Seiten-
vektoren des Dreiecks null ist.
Die letzten drei Summanden können interpretiert wer-
den als das Skalarprodukt aus einem VektorV und einem
Vektor ΔW:

−→
V P =

 ∂vz

∂y − ∂vy
∂z

∂vx

∂z − ∂vz

∂x
∂vy

∂x − ∂vx

∂y

 und ∆
−→
W =

2 ∆y ∆z
2 ∆z ∆x
2 ∆x ∆y

.

Der erste Vektor erhält wegen seiner besonderen Bedeu-
tung einen eigenen Namen: Rotation (von) v (geschrie-
ben: rot v).
Die Komponenten des zweiten Vektors sind die Projek-
tionen der Fläche ΔA in die Koordinatenebenen: ΔWx =
ΔAx, ΔWy = ΔAy, ΔWz = ΔAz.
Das heißt: Der Vektor ΔW ist identisch mit dem Flächen-
vektor ΔA. Dieser Vektor kann auch geschrieben werden
als

Δ A = ΔA n

wobei n der Normaleneinheitsvektor der Fläche Δ A ist.
Folglich ist

∑
∆

−→v · d−→s ≈ (rot −→v )P ·∆A −→n

und

1

∆A

∑
∆

−→v · d−→s ≈ −→n · (rot −→v )P .

Lässt man nun den Punkt P unbeschränkt an die Fläche
heranrücken, dann gehen ΔA und die Summe gegen null.
Für den Grenzwert des Quotienten gilt:

lim
∆A→0

∑
∆
−→v · d−→s
∆A

= −→n · (rot −→v )P .

Das heißt: Der Wirbel w des Feldvektors v im Punkt P
einer Fläche ist gleich der Projektion des Vektors rot v an
dieser Stelle auf die Flächennormale.
Beachten Sie: Der Vektor rot v ist nur eine Funktion des
Ortsvektors r(x, y, z), während der Wirbel auch von der
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Richtung der Fläche abhängt, für die der Wirbel berech-
net wird. DerWirbel an einer bestimmten Stelle ist maxi-
mal, wenn die Fläche auf rot v senkrecht steht; er ist null,
wenn der Vektor rot v in der Tangentialebene der Fläche
liegt.

8.3 Der Integralsatz von STOKES

Wir betrachten ein beliebiges Flächenstück A mit dem
Rand C.

Wir zerlegen die Fläche – wie in der Abbildung ange-
deutet – in kleine Flächenstücke ΔAi mit den nach außen
gerichteten Flächenvektoren ΔAi. Die einzelnen Flächen-
stücke sollen alle im gleichen Sinn wie der Rand C um-
laufen werden. Dabei werden alle Seiten – bis auf die, die
auf dem Rand C liegen – zweimal durchlaufen. Die Rich-
tungen der beiden Durchläufe aber sind gegensinnig.
Für jedes einzelne Flächenstückmit seinen vier Seiten gilt
dann:

4∑
k=1

−→v i,k ·∆−→s i,k ≈ rot −→v i ·∆
−→
A i

Summiert man über alle Flächenstücke ΔAi, so fallen alle
die Summanden heraus, deren Δsi,k nicht auf dem Rand
C liegt. Die übrig bleibenden werden nun mit dem Index
j versehen:

∑
i

4∑
k=1

−→v i,k ·∆−→s i,k =
∑
j

−→v j ·∆−→s j ≈
∑
i

rot −→v i ·∆
−→
A i

Für alle ΔA gegen null (wobei natürlich auch alle Δs gegen
null gehen) wird daraus

∮
C

−→v · d−→s =

∫
A

rot −→v · d−→A

wobei die Gestalt der Fläche völlig beliebig ist. Dies ist
der Integralsatz von STOKES.

8.4 Rechengesetze für Rotationen

rot (c−→v ) = c rot −→v c : reelle Zahl

rot (−→v +−→w ) = rot −→v + rot −→w

rot (U −→v ) = U rot −→v +(grad U)×−→v U = U (x, y, z)

8.5 Ergänzungen

1. Der Vektor rot v wird häufig als symbolische Determi-
nante geschrieben. Diese ist als Merkhilfe sehr nützlich.

rot −→v =
(

∂vz

∂y − ∂vy

∂z

)−→
i +(

∂vx

∂z − ∂vz
∂x

)−→
j +

(
∂vy

∂x − ∂vx
∂y

)−→
k

=

∣∣∣∣∣∣
−→
i

−→
j

−→
k

∂
∂x

∂
∂y

∂
∂z

vx vy vz

∣∣∣∣∣∣
2. Setzt man im Integralsatz von STOKES v = grad U, so
ergibt sich, da das Kurvenintegral über gradU längs einer
geschlossenen Kurve stets null ist,

rot grad U = 0

Das bedeutet: Ein Gradientenfeld (Potentialfeld) ist wir-
belfrei.
3. Ferner gilt:

div rot −→v = 0

Die Divergenz eines Feldes, dessen Feldvektor die Rota-
tion eines anderen Feldvektors ist, ist null. Ein »Rotati-
onsfeld« ist also quellenfrei.
Beweis am einfachsten durch Ausrechnen und Anwen-
dung des Satzes von SCHWARZ.

8.6 Beispiele

1. Ein Vektorfeld habe konzentrische, kreisförmige Feld-
linien um die Z-Achse. Der Größenwert v des Feldvek-
tors sei proportional 1/ρ (ρ = Abstand des betrachteten
Punktes von der Z-Achse). Gesucht die Gleichungen v =
v(r) und v = v(x, y, z) sowie rot v.
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Der Feldvektor v hat die Richtung des Vektors k x r und
soll den Größenwert v = c/ρ haben. Ferner ist

−→
k ×−→r = x

−→
j −y

−→
i = (−y x 0) und

∣∣∣−→k ×−→r
∣∣∣ =√x2 + y2 ,

und daher

−→v =
c
ρ

−→
k ×−→r√
x2 + y2

=
c
ρ2

(−→
k ×−→r

)
=

c

x2 + y2
(−y x 0) ,

rot −→v = c

∣∣∣∣∣∣∣
−→
i

−→
j

−→
k

∂
∂x

∂
∂y

∂
∂z

−y
x2+y2

x
x2+y2 0

∣∣∣∣∣∣∣
rot −→v = c

−→
k

(
∂

∂x

x

x2 + y2
− ∂

∂y

−y

x2 + y2

)
.

Mit

∂

∂x

x

x2 + y2
=

x2 + y2 − x 2x

(x2 + y2)
2 =

y2 − x2

(x2 + y2)
2 ,

∂

∂y

−y

x2 + y2
=

y2 − x2

(x2 + y2)
2

ergibt sich

rot −→v = 0

Ein Beispiel für ein solches Feld ist das magnetische Feld
(Feldstärke H) eines unendlich langen Leiters. (Siehe
»Einleitung – Zirkulation und Wirbel eines Vektors«)
Nach den MAXWELL-Gleichungen ist

rot −→H =
−→
j

−→
j : Vektor der Stromdichte

Da die Stromdichte außerhalb des Leiters überall null ist,
muss dort auch rot H = 0 sein.
Wir wenden nun zur Berechnung des Größenwerts H der
Feldstärke den Integralsatz von STOKES auf eine Kreis-
fläche vom Radius ρ an, die mit dem Leiter konzentrisch
ist und auf ihm senkrecht steht:

∫
A

rot −→H · d−→A =

∫
C

−→
H · d−→s

Nun ist einerseits

∫
A

rot −→H · d−→A =

∫
q

−→
j · d−→A =

∫
q

j dA = j q = I,

wobei q der Leiterquerschnitt und I die Stromstärke im
Leiter ist. Andererseits ist

∮
C

−→
H · d−→s =

∮
C

H d s = H

∮
C

d s = H 2πρ.

Also ist

I = H 2πρ ⇒ H =
I

2πρ
.

2. Gesucht sind die Eigenschaften des Feldvektors

−→v = c

−→
k ×−→r∣∣∣−→k ×−→r

∣∣∣ = c

−→
k ×−→r

ρ
.

(Siehe dazu die Abbildung bei Beispiel 1.)
Der Vektor v steht auf k und r senkrecht und hat die kon-
stante Länge c.
Ferner ist

−→
k ×−→r = x

−→
j − y

−→
i = (−y x 0)

und daher

−→v =
c√

x2 + y2
(−y x 0)
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Damit wird

rot −→v = c

∣∣∣∣∣∣∣
−→
i

−→
j

−→
k

∂
∂x

∂
∂y

∂
∂z

−y√
x2+y2

x√
x2+y2

0

∣∣∣∣∣∣∣
rot −→v = c

−→
k

(
∂

∂x

x√
x2 + y2

− ∂

∂y

−y√
x2 + y2

)
und schließlich

rot −→v =
c

ρ

−→
k .

3. Eine ebene Scheibe mit der Flächennormalen n rotiere
mit der Winkelgeschwindigkeit ω um einen ihrer Punkte
P mit n als Drehachse. Gesucht der Geschwindigkeits-
vektor v eines ihrer Punkte im Abstand R von P.

Es ist v = ω R und

−→v = ω−→n ×
−→
R = ω−→n × (−→r −−→p ) usw.

Einfacher ist es jedoch, ein neues Koordinatensystem ein-
zuführen, dessen Achsen parallel zu denen des alten sind
und dessen Ursprung in P liegt. Dann ist:
−→v = ω

(−→n ×
−→
R
)

und −→
R =

(
x y z

)
−→n ×

−→
R =

∣∣∣∣∣∣
−→
i

−→
j

−→
k

nx ny nz

x y z

∣∣∣∣∣∣ = (nyz − nzy)
−→
i +

(nzx− nxz)
−→
j + (nxy − nyx)

−→
k

rot −→v = ω

∣∣∣∣∣∣
−→
i

−→
j

−→
k

∂
∂x

∂
∂y

∂
∂z

nyz − nzy nzx− nxz nxy − nyx

∣∣∣∣∣∣ = 2ω−→n

9 Der Hamiltonsche Differential-
Operator Nabla (Nabla-
Operator)

Bei der Berechnung von Gradient, Divergenz und Ro-
tation werden an einer skalaren Funktion bzw. an ei-
ner Vektorfunktion bestimmte Rechenoperationen vor-
genommen. Diese weisen bei aller Verschiedenheit ge-
wisse formale Ähnlichkeiten auf: Immer werden die par-
tiellen Ableitungen der Funktion bzw. der Vektorkompo-
nenten gebildet.
1. Gradient: Es werden die partiellen Ableitungen der
Funktion U(x, y, z) berechnet und diese werden als Kom-
ponenten eines Vektors benutzt:

grad U =
∂U

∂x

−→
i +

∂U

∂y

−→
j +

∂U

∂z

−→
k

Dieser Vektor kann formal aufgefasst werden als das Pro-
dukt aus und einem »symbolischen Vektor«

∇ =
∂

∂x

−→
i +

∂

∂y

−→
j +

∂

∂z

−→
k ∇ : Nabla

und der Funktion U:

grad U =

(
∂

∂x

−→
i +

∂

∂y

−→
j +

∂

∂z

−→
k

)
U = ∇U.

2. Divergenz: Die Komponenten eines Vektors v = (vx
vy vz) werden partiell »nach ihrem Index« abgeleitet und
daraus durch Addition eine skalare Funktion gebildet:

div −→v =
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

Diese Summe kann formal aufgefasst werden als das
Skalarprodukt aus Vektor Nabla und dem Vektor

−→v = vx
−→
i + vy

−→
j + vz

−→
k

div −→v =

(
∂

∂x

−→
i +

∂

∂y

−→
j +

∂

∂z

−→
k

)
·
(
vx
−→
i + vy

−→
j + vz

−→
k
)
= ∇·−→v .

3. Rotation: Die Komponenten eines Vektors v werden
partiell »nach den beiden anderen Indices« abgeleitet und
daraus Differenzen nach Art eines Vektorprodukts ge-
bildet. Diese werden schließlich als Komponenten eines
neuen Vektors benutzt. In der Schreibweise als symboli-
sche Determinante wird dies am anschaulichsten:

rot −→v =

(
∂vx
∂y

− ∂vy
∂z

)
−→
i +

(
∂vx
∂z

− ∂vz
∂x

)
j+
(
∂vy
∂x

− ∂vx
∂y

)
−→
k
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=

∣∣∣∣∣∣
−→
i

−→
j

−→
k

∂
∂x

∂
∂y

∂
∂z

vx vy vz

∣∣∣∣∣∣

Dieser Vektor wiederum kann formal aufgefasst wer-
den als das Vektorprodukt aus dem symbolischen Vektor
Nabla und dem Vektor v:

rot −→v = ∇×−→v .

Der symbolische Vektor Nabla wird »Hamiltonscher Dif-
ferentialoperator« oder Nabla-Operator genannt. (Der
Name beruht auf der Ähnlichkeit des Symbols mit der
antiken Harfe Nabla.) Also:
Zusammenfassung:
Mit

∇ =
∂

∂x

−→
i +

∂

∂y

−→
j +

∂

∂z

−→
k

ist

grad U = ∇U, div −→v = ∇·−→v , rot −→v = ∇×−→v .

Hier gibt es eine PDF-Version.

10 Anhang

In diesem Anhang stelle ich zunächst die Beweise der
elementaren Rechengesetze für die Differentialoperato-
ren Gradient, Divergenz und Rotation zusammen. Dabei
gehe ich auch die Anwendung des Differentialoperators
Nabla ein. Danach beweise ich die Rechengesetze für die
Kombinationen der Differentialoperatoren. Dabei setze
ich die Rechengesetze der Analysis (skalerer Funktionen)
als bekannt (und bewiesen) voraus.
Zur deutlichen und auffälligen Unterscheidung verwende
ich dabei für skalare Ortsfunktionen die Buchstaben f =
f(x, y, z), g = g(x, y, z) usw., für vektorielle Ortsfunktio-
nen die Buchstaben v = v(x, y, z), w = w(x, y, z) usw.

10.1 Elementare Rechengesetze für die
Differentialoperatoren

10.1.1 Gradient
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10.1.2 Divergenz 10.1.3 Rotation
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10.2 Zweifache Differentialoperationen

Durch Kombination von zwei Differentialoperatoren
(Gradient, Divergenz, Rotation) werden die zweiten par-
tiellen Ableitungen der betreffenden Funktion(en) gebil-
det.Wegen der Natur (Skalar oder Vektor) und wegen der
Anwendbarkeit (auf skalare Funktionen oder auf Vektor-
funktionen) sind nur bestimmte Kombinationen möglich.
Diese sind:

Wir untersuchen nun diese Kombinationen:

Weitere Vereinfachungen oder symbolische Abkürzun-
gen sind nicht möglich.

Beweis durch Ausrechnen und Beachtung des Satzes von
SCHWARZ, der besagt, dass bei Stetigkeit der zweiten
Ableitungen die Reihenfolge der Differentiationen belie-
big ist. Man sieht, dass in diesem Fall der symbolische
Vektor Nabla der Regel folgt, dass das Skalarprodukt
zweier aufeinander senkrechter Vektoren null ist.
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Die Begründung ist dieselbe wie oben (Satz von
SCHWARZ). Auch hier folgt der Nabla-Operator ei-
nem Rechengesetz der Vektoralgebra: Das Vektorpro-
dukt zweier paralleler Vektoren ist null.

Dieser Vektor kann so umgeformt werden, dass daraus
ein Ausdruck wird, der sich später in der Elektrodynamik
als sehr nützlich erweist: Zu seinen Komponenten werden
jeweils drei Terme addiert, die am Ende wieder subtra-
hiert werden, sodass daraus die Differenz zweier Vekto-
ren wird. Der erste davon ist der Vektor grad div v.
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Der letzte Term ist der Vektor, der durch Anwendung des
LAPLACE-Operators auf den Vektor v entsteht. Also ist
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