Vektoranalysis: Druckversion

1 Grundbegriffe

Die Vektoranalysis wendet die Methoden der Analysis
(Differential- und Integralrechnung) auf mathematische
Funktionen an, in denen Vektoren auftreten, die sich in
Abhingigkeit von Ort und Zeit verdndern konnen. Die
wichtigsten Anwendungsgebiete der Vektoranalysis sind
physikalische Felder, insbesondere elektromagnetische
Felder.

1.1 Physikalische Felder

sind Teilgebiete des Raumes R?, in denen jedem Punkt
eindeutig ein Skalar oder ein Vektor (auch ein Tensor
oder Spinor) zugeordnet ist. Je nach Art der »Feldgrofe«
spricht man von einem Skalarfeld oder einem Vektorfeld.

Skalare FeldgroBen sind z. B. Druck, Temperatur, Be-
leuchtungsstirke, Potential.

Vektorielle FeldgroBen sind z. B. elektrische und ma-
gnetische Feldstéirke, magnetische Induktion, Strémungs-
geschwindigkeit.

Kraftfelder sind Felder, in denen z. B. eine elektrische
Ladung oder eine Masse eine Kraft erfihrt.

Elektrodynamische Felder sind zeitlich verinderliche
elektrische und magnetische Felder, in denen Induktions-
vorginge stattfinden.

Feldlinien sind (gedachte) Linien dergestalt, dass die
Vektoren der Feldgrofle ihre Tangenten sind. Bekannte
Beispiele sind: Stromlinien, elektrische und magnetische
Feldlinien.

2 Vektorfunktionen

Zur Schreibweise: Im Text werden - der deutschen Norm
folgend - die Zeichen fiir Vektoren (V) kursiv und fett
geschrieben. In den mit TeX gesetzten Formeln sind die
Zeichen mit einem Pfeil versehen.

Fiir die Beschreibung eines Vektors durch seine kartesi-
schen Komponenten sind drei Schreibweisen {iblich: Mit-
tels der Einheitsvektoren i, j, k auf der X-, Y- und Z-
Achse, als einzeilige Matrix und als einspaltige Matrix.

Ve
Vv 74V, +V.E=(V, V, V.)=[V,
V.

Ich werde diese Schreibweisen je nach Zweckmifigkeit
abwechselnd verwenden.

Eine Funktion, bei der die abhingige Variable ein Vek-
tor ist, heiit Vektorfunktion. Im einfachsten Fall sind
die (skalaren) kartesischen Komponenten Vx, Vy, Vz des
Vektors Funktionen einer einzigen Variablen u (einpara-
metrige Vektorfunktion).

2.1 Ableitung einer Vektorfunktion

Analog zur Definition der Ableitung einer skalaren Funk-
tion ist die Ableitung einer Vektorfunktion V(u) definiert:

TN

— = lim = lim
du Au—s0 Au Au—0

V (u+ Au) — V (u)
Au '

Durch Zerlegung des Vektors V in seine kartesischen
Komponenten folgt daraus:

AV (AWT AV, T+ AVE
—— = lim
du Au—0 Au

mit

AV, =V, (u+ Au) =V, (u) usw.
Daraus ergibt sich schlielich

AV dVe—  dV,—  dV.—

—_— = k .
du duz—’_du]—’_du

Die Ableitung des Vektors V(x) nach u ist als Summe
dreier Vektoren wieder ein Vektor.
Ist insbesondere der Vektor V der vom Ursprung O des

Koordinatensystems ausgehende »Ortsvektor« 7 =0
eines Punktes P(x, y, z), so gilt

e
T=xi +yj +zk.

Bewegt sich der Punkt P irgendwie im Raum und sind
seine Koordinaten differenzierbare Funktionen der Zeit ¢,
SO ist
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_>
T=TW)=x@)i +yt) ] +z(t)k
und
d7 _do— dy—> dz—
arde D A Tae

Nun sind aber dx/dt, dy/df und dz/dt die Geschwindigkei-
ten der Projektionen des Punktes P auf die Achsen:

do_ o ody_ o dz_
dt 7 dt Y dt 7
und daher

a7 — — —
W:vwz +oyj +u k.

Dieser Vektor aber ist nichts anderes als der Geschwin-
digkeitsvektor von P, also ist

a7 _
at 7

Analog ergibt sich der Vektor a der Beschleunigung des
Punktes P:

dt (ZT) B

2.2 Differentiationsregeln

7
de?

ap=

Analog beweist man folgende Regeln:

1. Die Ableitung des Produkts einer skalaren Funktion
f(u) und eines konstanten Vektors V

i[f(u)ﬂ:%?

du
2. Die Ableitung eines konstanten Vektors ist null.

3. Die Ableitung der Summe und Differenz zweier Vek-
toren:

av
*im

d

= [V W] =

4. Weitere Differentiationsregeln:

4V

745

f (w): skalare Fun

pi) -V,
du _d d ’
—

d oy AV o dw
d dV df
G U= T 5
2.3 Beispiel
Der Ortsvektor r eines Punktes P sei

. - h —
7 (¢) = (acos) © + (asing) J + 50 k.

Wenn @ alle reellen Zahlenwerte annimmt, durchlduft der
Punkt P eine Schraubenlinie mit dem Radius a und der
Ganghohe h. Die Ableitung dieser Vektorfunktion ist der
Vektor

av (asin )—'>+(cos )_}—FhE>
— = —(asi 1 a —k.
do 4 )T
Setzen wir

p=wt w = konst.

wobei ¢ die Zeit sein soll, so hat P die konstante Winkel-
geschwindigkeit « und den Geschwindigkeitsvektor

d7
dt

d7
dy

d?d¢
de dt

3 Anwendungen auf die Differenti-
algeometrie der Raumkurven

3.1 Tangente, Tangentenvektor, Tangen-
teneinheitsvektor einer Raumkurve

Analog zu den ebenen Kurven wird definiert:

Die Tangente an eine Raumkurve mit dem Ortsvektor
r(u) in einem ihrer Punkte P ist die Gerade durch P mit
derselben Richtung wie der Vektor (dr/du)P (das bedeu-
tet: die Vektorfunktion dr/du gebildet an der Stelle P).

Dabei ist u irgendeine Variable, durch die r beschrieben
wird.

Diese Definition wird sofort plausibel, wenn wir die Va-
riable u durch die Zeit ¢ ersetzen. Dann ist (siehe oben):

I

v 3.
’ dt

=37

. —=
= (—awsinwt) 7 +(aw coswt) j



3.2 Schmiegungsebene und Kriimmung einer Raumkurve

Der Geschwindigkeitsvektor v gibt aber die momenta-
ne Bewegungsrichtung des Punktes P an, und das ist die
Richtung der Kurventangente.

Fiihren wir nun wieder die beliebige Variable u ein, dann
wird

a7

du

d7 dt

dt du

E
du

wobei df/du lediglich ein skalarer Faktor ist, der an der
Rlchtung des Vektors v nichts dndert. Also hat auch der
Vektor TS Richtung von v und damit die Richtung
der Tangente

Fiir das Folgende brauchen wir den auf der Kurventan-
gente gelegenen Einheitsvektor. Er wird mit # bezeichnet.
Man findet ihn, indem man den Geschwindigkeitsvektor
durch seinen Betrag dividiert:

|
-

[=%
e

wobei v die Bahngeschwindigkeit des Punktes P ist. Ist r
als Funktion der Bogenlidnge s der Kurve gegeben, wobei
s von einem beliebigen Punkt der Kurve aus gemessen
wird, dann kann man v durch ds/d¢ ersetzen:

a
~

5 _ %% _d7dr_d7
T ds T4t ds  ds

3.2 Schmiegungsebene und Kriimmung
einer Raumkurve

Es ist niitzlich, sich zunichst die analogen Uberlegungen
und Begriffe bei einer ebenen Kurve zu vergegenwirtigen.
Dort liegen selbstverstindlich auch alle Kurventangenten
in derselben Ebene, der Ebene der Kurve. Andert sich

die Richtung der Tangente (ihr Winkel) auf der Weglinge
(Bogenldnge) As um den Wert A 7 so ist die »mittlere
Kriimmung« ky, auf der Strecke As

AT
Fm = X5

und die Kriimmung der Kurve im betrachteten Punkt P

AT
k= lim —
AsDo As’
Unter dem Kriimmungskreis der Kurve im Punkt P ver-
steht man den Kreis durch P, der dieselbe Steigung und
dieselbe Kriimmung wie die Kurve in P hat. Der Radius
o dieses Kreises heifit Kriimmungsradius der Kurve in P.
Es gilt

P:?

Die Tangenten einer Raumkurve liegen nicht in derselben
Ebene und es gibt — im Gegensatz zu Fliachen — im Punkt
P auch nicht nur eine Tangentialebene, sondern unend-
lich viele. Unter ihnen greifen wir die Ebene heraus,in
der der Tangenteneinheitsvektor £ und der Vektor dt/ds
liegen. Der letztgenannte Vektor gibt niamlich die Rich-
tung an, in welcher sich der Vektor # in P dreht. Diese
Ebene heiflt die Schmiegungsebene der Kurve in P.

Der in der Schmiegungsebene liegende Einheitsvektor,
der auf ¢ senkrecht steht und dieselbe Richtung wie der
Vektor dt/ds hat, hei3t Hauptnormaleneinheitsvektor n
der Kurve in P.

Hat ein Vektor v(x) eine konstante Linge v, so ist we-
gen v? = v? auch v? = konst. Differenziert man die letzte
Gleichung nach u und benutzt dabei die Regel fiir die Dif -
ferentiation eines Skalarprodukts v-w mit w = v, so findet

man

< (@)= av_

i (7 7)_27

Wenn das Skalarprodukt zweier Vektoren v und dv/du
null ist und keiner der beiden Vektoren selbst null
ist (Nullvektor bzw. konstanter Vektor), dann miissen
die beiden Vektoren aufeinander senkrecht stehen. Dies
leuchtet auch unmittelbar ein: Wenn der Vektor dv/du ei-
ne Komponente in Richtung v hitte, dann wiirde sich die
Linge von v zugleich mit u# verdndern.

Dieses Ergebnis wenden wir auf den Tangenteneinheits-
vektor ¢ einer Raumkurve an. Da die Lange von £ konstant
ist, muss seine Ableitung d#/ds auf ¢ senkrecht stehen.



In der Abbildung liegen der Tangenten- und der Nor-
malenvektor in der Zeichenebene, die folglich mit der
Schmiegungsebene zusammenfillt. Die Kurve selbst da-
gegen verlduft im Allgemeinen links und rechts von P
auBerhalb dieser Ebene.

Unter der mittleren Kriimmung einer Kurve im Bereich
As versteht man den auf As bezogenen Drehwinkel Az der
Tangente. Ihr Grenzwert fiir As gegen 0 heifit Kriimmung
k der Kurve im Punkt P.

AT

As

Ein in der Schmiegungsebene gelegener Kreis durch P
mit derselben Steigung und derselben Kriimmung wie die
Raumkurve, heifit Kriimmungskreis der Kurve. Sein Ra-
dius heiffit Kriimmungsradius ¢ der Kurve in P. Da fiir
den Kreisbogen As (unabhéngig von seiner Grofie) stets
gilt

As=9 AT,
gilt fiir seine Kriimmung
k =At/As =1/o

Zur Berechnung der Kriimmung einer Kurve aus ihrem
Ortsvektor r(s) gehen wir wie folgt vor:

4 INTEGRALRECHNUNG MIT VEKTOREN

1. Berechnung von d#/ds:

d7 _dfdr _d71_dt,
s drds drp dr

2. Berechnung von d#/dt:

At

t
At At

L +AL
Es ist:
At . At AT 1 [ATN?
—RrRsn—=——-—=\|—] +—
2 2 2 31\ 2
und
At 2 AT L ATV LAt At
Ar A T T T 2 ar  aoAr

3. Damit ergibt sich:

1

o7
ds p

Da der Vektor d¢#/ds die Richtung des Normaleneinheits-
vektors n hat, ist

it @7

1
ar _ — kT =7
ds "

—_— T
d s? p

Hieraus folgt durch Quadrieren und Wurzelziehen:

T

4 Integralrechnung mit Vektoren

In Integralen konnen Vektoren sowohl als Integrand (=
die zu integrierende Funktion) als auch als Differential
bei dem Integranden auftreten.



1. Typ: Nur der Integrand ist ein Vektor

Ein typisches Beispiel ist das Zeitintegral der Kraft, das
in der Dynamik auftritt. (Dort ist es ein bestimmtes Inte-
gral; es geniigt hier jedoch, nur unbestimmte Integrale zu
untersuchen.)

5 Skalare und vektorielle Felder
und FeldgroBen

Ein physikalisches Feld ist — wie eingangs schon erklart
— ein Teilgebiet des Raumes, in welchem in jedem Punkt

J Fdt = / < F, 7 + F, 7 +F, ?) dt = 7 [ F, dt _p@ fipgegggbﬁgf@tg gkalare oder vektorielle physi-

[Fdt=([F.dt [F,dt [F,dt).
Das Ergebnis ist also, wie zu erwarten war, ein Vektor.

Anmerkung: Dass oben die Einheitsvektoren i, j, k wie
konstante Faktoren vor die Integrale gezogen werden diir-
fen, lisst sich wie folgt beweisen: Das Integralzeichen ist
das Symbol fiir den Grenzwert einer Summe. Konstan-
te Faktoren bei den Summanden konnen ausgeklammert
werden, auch wenn sie (konstante) Vektoren sind.

2. Typ: Integrand und Differential sind Vektoren

Ein Beispiel dafiir ist das Wegintegral der Kraft, mit dem
die Arbeit berechnet wird.

[Fd7 =[(F, F, F.)-(dz dy dz)
JF,dy+ [F.dz

Da F-dr ein Skalarprodukt ist, ergibt sich fiir das Ergebnis
des Integrals erwartungsgemif auch ein Skalar.

Ein spezielles wichtiges Beispiel hierfiir ist:

kalische GroBe (»FeldgroBe« genannt) anzutreffen ist.

Bei Skalarfeldern ist die (skalare) Feldgrofie U eine ska-
lare Funktion des Ortsvektors r des betrachteten Punktes
P:

U=Ur)=U, y, 2).

Beispiele fiir skalare FeldgroBen sind Druck und Tempe-
ratur in der Atmosphire, das Gravitationspotential in der
Umgebung einer Masse (z. B. der Erde), das Potential
in der Umgebung eines elektrisch geladenen Korpers, die
Lautstérke in einem Schallfeld.

Bei Vektorfeldern ist die (vektorielle) Feldgrole V eine

= [ F, Wektorfunktion von -

V=V(r)=V(, Yy, 2).

Beispiele fiir vektorielle Feldgroen sind die elektrische
und die magnetische Feldstérke, die Gravitationsfeldstir-
ke, die Geschwindigkeit von Gasen und Fliissigkeiten in

[T AV = [v, dv, + [v, dv, + [v, dv, = 1 (v2 ﬁ%f‘lﬂu%}}j*fﬁ‘rk@r% ivit
C

Die Integration folgt hier formal derselben Regel wie bei
Jzdz.

Ein anderes interessantes Beispiel (unter Verwendung des
erst spiter erklarten Operators grad, dessen Bedeutung
hier erkennbar ist):

fgradUd?zf(?Tg % %)-(dz dy dz)

Jerad U a7 = [ (%% 55 90 (dw dy dz) =

Jdy 0Oz

_/<‘9de+5Udy+3Udz> ~ [av=vc

ox dy 0z

Erlduterung: Der Integrand im vorletzten Integral ist das
vollstandige Differential dU der Funktion U = U(x, y, z).

3. Typ: Nur das Differential ist ein Vektor

JUAT = [U(dv, dv, dv) =i[Udv,+j[Udo, Lk

Das Ergebnis ist ein Vektor.
Hier gibt es eine PDF-Version.

5.1 Ein wichtiges Beispiel fiir ein Vektor-
feld und ein Skalarfeld

Die elektrische Feldstéirke E im Feld einer punktférmigen
elektrischen Ladung vom Betrag Q, die sich in O befindet,
ist

Lo 1 Q.
E() = pr— T—QT.

Das Potential ¢ eines Punktes P in einem beliebigen elek-
trischen Feld ist definiert als die »ladungsbezogene Ar-
beit« W/q, die aufzuwenden ist, um die Ladung g aus un-
endlicher Entfernung zu dem Punkt P zu bringen. (Ein
Punkt eines Feldes besitzt nur dann ein definiertes Poten-
tial, wenn diese Arbeit vom Weg unabhéngig ist, auf dem

die Ladung nach P gebracht wird. — Dieses Problem wird
spéter noch genauer untersucht.) Also:

. w
Potential p = —.
q

Diese Definition gilt analog auch fiir das Potential eines
Gravitatio?s?ldes, wobei lediglich ¢ durch die Masse m
e

2, .
g I&)rﬁers Zu ersetzen ist.

Fiir das oben beschriebene zentralsymmetrische elektri-
sche Feld, in dem — wie spiter gezeigt wird — jedem Punkt
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ein Potential zugeordnet werden kann, errechnet man die
Arbeit durch eine Integration:

Da in diesem Feld die Arbeit vom gewihlten Weg un-
abhingig ist, denken wir uns die Ladung g einfach radi-
al nach innen bewegt, wobei dann Kraft- und Wegvektor
gleich- oder entgegengesetzt gerichtet sind. Allerdings ist
der Vektor ds dem Vektor dr entgegengesetzt gerichtet,
da die Bewegung in Richtung abnehmendem r erfolgt: ds
=-dr.

In einem Punkt mit der Feldstirke E erfahrt die Ladung
q eine Kraft vom Betrag F' = E ¢, also ist

Damit erhalten wir fiir das Potential

w_oe  Q 1
v q _47r50r_47r50,/x2+y2+z2'

Da das Potential (definitionsgeméB) ein Skalar ist, ist das
Potentialfeld ein Skalarfeld.

Fiir r = konst. ist auch ¢ = konst. Die Punkte gleichen
Potentials liegen also auf einer Kugelfliche um O. Die
»Aquipotentialflichen« oder »Niveauflichen« dieses Fel-
des sind also Kugeln (siehe Abbildung). Das elektrische
Potential wird in Volt (V) gemessen.

Aquipotentialfiichen einer Kugelladung

5.2 Anstieg und Steigung einer skalaren
FeldgroBe

Wir begeben uns nun zu einem Punkt P(x, y, z) eines
Skalarfeldes mit der Feldgrofie U(r) und fragen zunéchst
nach dem Anstieg AU der Feldgrofe auf der Strecke As
und dann nach der mittleren Steigung AU/As der Feld-
grofle auf derselben Strecke. (Die Feldgrofe konnte z. B.
die Temperatur, der Luftdruck oder das Potential eines
Feldes sein. )



5.3 Richtungsableitung und Gradient einer skalaren Feldgrofse 7

Die Quotienten Ax/As, Ay/As, Az/As sind die Richtungs-

kosinus des Vektors|A s:

3 Az
= cos —~ =cosn.
" As Y

Asu +‘£ﬁ' Al

Sie smd vom Betrag As des Vektors As unabhingig und

A "':_bleiben atich fiir As [gegen null unverindert. Sie sind die

skalare_n Komponenfen des Einheitsvektors eAs, der die-
selbe-Richtung hat Wie A s:

Tav =+ (cosa cpsp cosy)
Damit wird
g a—Ucosa+ afUcosﬂ-i- afUcos
As~ Oz dy 9z T

Daraus ergibt sich fiif As gegen null die Steigung der Feld-
grofe U in Richtung As:

daUu
ds

AU |
As~>0 AS

| OU dzx
[ 0z ds

3Udy
(9y ds

oU dz
Dz ds

Dazu brauchen wir zunichst die Steigung der Feldgrofe
in Richtung der drei Koordinatenachsen.

Die Differentialrechnung liefert fiir die Steigung der
Feldgrofe U in Richtung der drei Koordinatenachsen im
Punkt P:

a—U = lim & y, 2z konst
ox Az—0 Az ’ ’
oU _ lim = x, z konst
ay Ay—)O Ay ’ ’
a—U = lim & x, y konst
0z  Bz—0 Az ’ ’

Der Anstieg AU der Feldgrofie U langs einer Strecke A s
= (Ax Ay Az) ist dann - dies ist ebenfalls ein Ergebnis der
Differentialrechnung - fiir hinreichend kleine Ax, Ay, Az

LN

AU oz 0y 0z

und die mittlere Steigung AU/As der Feldgroe U auf der
Strecke A s ist

AU
As

oU Ax
~ ox As

oU Ay
3y As

oU Az
9z As’

4v _ a—Ucosa—ka—UcosB—i-a—Ucos
ds Oz Ay 9, 0T

5.3 Richtungsableitung und Gradient ei-
ner skalaren FeldgroBe

Der soeben gefundene Term fiir die Steigung der Feld-
grofe U in der durch den Vektor (cos o cos 8 cos v) be-
schriebenen Richtung kann interpretiert werden als das
Skalarprodukt des Vektors

G W U= Uy
Oz Gyj 0z

und des Vektors

— —
cosa+ j cosf+ k cosn.

Der Vektor v hat bemerkenswerte, fiir die Untersuchung
von Feldern sehr niitzliche Eigenschaften, weshalb er ei-
nen eigenen Namen erhalten hat: Gradient U (grad U).
(»Gradient« ist ein aus einem lateinischen Stamm abge-
leitetes Kunstwort, das man etwa mit »Steigungszeiger«
tibersetzen konnte.) Damit gilt fiir die so genannte Rich-
tungsableitung der Feldgrole U in der Richtung des
Vektors (cos a cos 3 cos )



ds

Die besonderen Eigenschaften des Vektors grad U erge-
ben sich so:

Das Skalarprodukt zweier Vektoren v und w ist gleich
dem Produkt ihrer Betrige v und w und dem Kosinus des
Winkels d zwischen den beiden Vektoren:

T W =vw cosd.

Bei gegebenen Werten von v und w ist der Wert des
Skalarprodukts maximal (ndmlich gleich u v), wenn & =
0 ist. Die Richtungsableitung (= Steigung) der Feldgrofe
U ist also dann am grofiten, wenn der Vektor eAs (oder
der Vektor A s) dieselbe Richtung wie der Vektor grad U
hat. Anders herum gesagt:

Der Vektor grad U weist in die Richtung, in der die
FeldgroBe U die groBite Steigung hat (am stérksten
steigt).

Steht dagegen der Vektor eAs auf dem Vektor grad U
senkrecht, dann ist dU/ds = 0. Das bedeutet, der Vek-

tor eAs liegt in der Tangentialebene der Niveaufliche U
= konst. des betrachteten Punktes P. Daraus folgt:

Der Vektor grad U steht auf der Niveaufliiche durch
den Punkt P senkrecht.

Ferner: Der Maximalwert der Steigung (oder der Rich-
tungsableitung) ist der Maximalwert des obigen Skalar-
produkts:

dU
<d> = |grad U] - ‘?A?| = |grad U] .
s max

Das bedeutet: Der Betrag des Vektors grad U ist gleich
dem Maximalwert der Steigung der Feldgrofe im be-
trachteten Punkt.

Beispiel: Gesucht ist der Gradient des Potentials ¢ einer
elektrischen Punkt- (oder Kugel-)ladung Q.

Fiir das Potential gilt, wie friiher gezeigt wurde,:

o= -2~ 9 .
PRy

41 egr
Die partiellen Ableitungen werden am einfachsten nach
der Kettenregel gebildet:

6 POTENTIALFELDER

5.4 Rechengesetze fiir Gradienten

v _ =grad U-¢ o» = grad U- ( i cosa + j cos 5 + E&Ggm U, U; und Uy skalare Ortsfunktionen, und C

eine reélle Zahl. Dann gelten, wie man leicht zeigen kann,
folgende Rechengesetze:

grad C=0

grad (CU) = CgradU

grad (U £ Usy) = grad Uy £ grad U,

grad (Uy Us) = (grad Uy) Us + Uy grad Us
grad UM = n U™ grad U

d(v)

grad f(U) = 7

grad U

6 Potentialfelder

Die Physik lehrt, dass elektrostatische Felder und statio-
nire Gravitationsfelder - unabhéngig von der Anzahl und
der Anordnung der Ladungen bzw. Massen, die das Feld
aufbauen - so genannte Potentialfelder sind. Das bedeu-
tet: Um eine Ladung g bzw. eine Masse m aus unendlicher
Entfernung zu einem bestimmten Punkt P des Feldes zu
bringen, ist eine (positive oder negative) Arbeit aufzu-
wenden, die unabhidngig von dem Weg ist, auf dem die
Ladung bzw. die Masse transportiert wird.

Da die aufzuwendende Arbeit proportional der Ladung
bzw. Masse ist, erhdlt man eine nur von der Lage des
Punktes P abhingige skalare Groe, wenn man die Arbeit
durch die Ladung bzw. Masse dividiert. Diese Grofe, al-
so die »ladungs- bzw. massebezogene Arbeit«, heif3t das
Potential ¢ des Punktes P:

bzw.

JE

Potential ¢(P) = ¢(7) = %

6.1 Potential und Feldstiirke
Der Vektor der Feldstirke ist definiert als die ladungs-

bzw. massebezogene Kraft, die eine Ladung g bzw. eine
Masse m in einem Punkt des Feldes erféhrt:

Feldst Elektrischelike F —

)

Gravitationsfeldst3rke 7 =

S\mﬁ\“@i

Op dpdr Q x
dr  dr dz 47r50r2,/$2+y2+z2
- = 7 Q
dp=———( F)=-rts
grady 47 eqrs TEAY) Tt 47 egrs

T dme, 3Wegkier formalen Ubereinstimmung der entsprechen-

den Gleichungen fiir das elektrische Feld und das Gravi-
tationsfeld und wegen der sich dadurch anbietenden Ver-
einfachung bezeichne ich im Folgenden die Feldstirke



6.2 Verschiebungsarbeit in einem Potentialfeld

allgemein und neutral mit V. Die GroBe g kann fortan
sowohl eine elektrische Ladung als auch eine »schwere
Ladung«, das heif3t eine Masse, bedeuten.

In einem Punkt A des Feldes habe das Potential den Wert
@A, in einem Punkt B den Wert ¢B. Dann ist der Poten-
tialunterschied der beiden Punkte

Wg W 4 AWaug
Apap=¢p—pa=—— — = .
q q q

Dabei ist AWAB die Arbeit, die aufzuwenden ist, um die
Ladung Q von A nach B zu transportieren. Fiir sie gilt:

AWap = FA AT ap = ?A (Tp—T4),

wobei FA die in A auf die Ladung wirkende Kraft sein
soll. Damit wird

T AT up
S,

Apap ~

Da die »arbeitende Kraft« der vom Feld auf die Ladung
ausgeiibte »Feldkraft« FFg4 entgegengesetzt gleich und
andererseits FFg4/g gleich der Feldstirke V ist, folgt

Apap = —7,4 AT ap =

— — — — -
:f(sz‘ +V,J +Vzk) (A:cABi +Ayapj +Azapk ) =

= — (VoAzap + VyAyap + V.Azap),

wobei Vx usw. die Komponenten des Vektors V an der
Stelle A sind.

Wihlt man ArAB so, dass AyAB = AzAB = 0 ist, dann
wird daraus

Apap
Azap

Apap ~ -V, Axap und ~ —V,.

Lisst man B unbeschrinkt gegen A riicken, so wird

lim SP45 _ (02) Ly
B—A A.’L‘AB ox A

Analog findet man

(31).-

-V, und <8<p> =-V..
0z ) 4

Daraus folgt weiter (jetzt ohne Indices geschrieben):

B
Al Ay s o

dp— Op—
Or y T,

%
- V-V, T-V.E =-V.

Der Term auf der linken Seite aber ist der Vektor grad ¢.
Dabher gilt fiir jedes beliebige Potentialfeld

grad ¢ = —7.

Umgekehrt gelesen:

Der Feldstirkevektor eines jeden Potentialfeldes ist
gleich dem negativen Gradienten des Potentials.

6.2 Verschiebungsarbeit in einem Potenti-
alfeld

In einem Potentialfeld werde eine Ladung g gegen die
Kraft des Feldes von A nach B verschoben. Die dazu auf-
zuwendende Arbeit ist

B

W= /?-d?
A

und wegen

?: q7:qgrad<p
B

qu/gmdcp-d?

B B
B dp Oy dp B / B
q/(axdx+aydy+8zdz =q [ dp=q(pp—pa).
A A

(Der Integrand ist das vollstandige Differential dg des nur
vom Ort abhédngigen Potentials ¢ = ¢(x, y, z).)

Also:

B
W= [F-d7 =qlps—¢a).
/

Die Arbeit W hingt also nur vom Potential des Anfangs-
und Endpunktes des Weges ab, nicht aber vom Verlauf
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des Weges; das entsprechende Linienintegral ist »wegun-
abhéngig«.

Wird die Ladung g zunichst auf einem beliebigen Weg
von A nach B gebracht und danach auf einem anderen
Weg von B zuriick nach A, so ist

Wap =q(pp —9a) und Wpa=q(pas—¢B)

und daher

Wapa =Wap +Wpa =0.

Das heifit: Das Linienintegral wird null, wenn man es tiber
einen geschlossenen Weg bildet.

j{F-dr:O

Zusammenfassung:

In einem Vektorfeld,
e zu dem ein Potentialfeld gehort,

e oder, was dasselbe ist, dessen Feldvektor der nega-
tive Gradient eines Skalarfeldes ist,

ist das Arbeitsintegral iiber einen geschlossenen Weg
gleich null.

Das bedeutet, dass man durch Herumfiihren einer La-
dung auf einem geschlossenen Weg weder Arbeit gewin-
nen kann noch Arbeit investieren muss.

Ein solches Vektorfeld und die in ihm auf eine Ladung
ausgeiibte Kraft heillen konservativ.

Welche Bedingungen muss der Feldvektor V erfiillen,
damit er der negative Gradient eines Skalarfeldes mit
der Feldfunktion U(x, y, z) sein kann?

Wenn

6 POTENTIALFELDER

v=(V, V, ‘@):—gradUE—(%{ w %U)

sein soll, muss

sein. Diese Forderung ist keineswegs selbstverstindlich
oder trivial, denn Vx, Vyund Vz kénnen im Allgemeinen
drei von einander vollig unabhingige Funktionen sein.

Nach dem Satz von SCHWARZ muss

o(%) _ oou :5(%5) _ U
dy ~ Ox Oy dx Oy oz’
0*U B 0*U

Oy 0z 0z 0y

und

02U B 92U

0z 0z ~ Oz Oz

sein. Das heif3t: Bei der Bildung der zweiten partiellen
Ableitung nach verschiedenen Variablen ist die Reihen-
folge beliebig.

Auf unser Problem angewendet, bedeutet das: Wenn der
Feldvektor V der negative Gradient eines Skalarfeldes mit
der Feldfunktion U sein soll, muss

v, _ o,
oy Oz’

av,  ov.

ov, ov. _ v,
0z Oy

und or 0z

sein. Dann und nur dann ist (Vx dx + Vy dy + Vz dz) das
vollstindige Differential dU einer Funktion U, und nur
dann kann daraus durch Integration eine Funktion U be-
stimmt werden, deren negativer Gradient dann der Vek-
tor V ist. (Und nur dann ist auch der Wert des Arbeitsin-
tegrals vom Weg unabhingig.)

Spiter wird sich zeigen, dass die oben beschriebene Be-
dingung identisch ist mit der Forderung, dass das Feld mit
dem Feldvektor V wirbelfrei ist, (d. h., dass tiberall rot V
=0ist.)

Beispiel:
Der Feldvektor

V=lv= L

—— (= y 2
T (I2+y2+22)

erfiillt — wie man leicht durch Rechnung bestitigen kann
- die oben beschriebene »Integrabilititsbedingung«, und
es ist



7.1
1 1
U=-+C=—~———— +C.
r VaoZ+y? 4 22

Hier gibt es eine PDF-Version.

7 Die Divergenz eines Feldvektors

7.1 Vorbereitende Betrachtungen: Fluss,
Schiittung, Quelldichte

Gegeben sei ein »Stromungsfeld« mit dem Feldvektor
v(r), wobei v die Geschwindigkeit einer Fliissigkeit ist.

Stellen wir uns ein von einem Drahtrahmen umgrenztes
ebenes Fliachenstiick vom GroBenwert A vor, das so in die
Fliissigkeit eintaucht, dass es auf der zunichst als homo-
gen angenommenen Stromung senkrecht steht.

AV

v At

NENR

Dann stromt in der Zeitspanne Ar das Fliissigkeitsvolu-
men AV = v-Ar-A durch den Rahmen. Der Quotient aus
diesem Volumen und der Zeitspanne At heifit der Fluss
@ der Stromung (oder auch — nicht ganz exakt, aber ge-
brauchlich - der Fluss @ des Feldvektors v) durch das Fla-
chenstiick:

=vA.

_ AV _ v AtA
Fluss & = Ar = A

Der Fluss hat demnach die Dimension Volumen/Zeit
=Linge3/Zeit.

Steht das Flachenstiick auf der Stromungsrichtung nicht
senkrecht, dann ist

AV =v At A cosp,

wobei ¢ der Winkel zwischen dem Geschwindigkeitsvek-
tor v und dem auf der Fliche senkrecht stehenden Fli-
chenvektor A ist.

Vorbereitende Betrachtungen: Fluss, Schiittung, Quelldichte 11

e

AV

ﬂ__ﬁ-f"
é‘v’ @
A

i

Dann ist der Fluss durch das Fldchenstiick
d=vAcosp=Vv-A,

wobei v-A das Skalarprodukt der Vektoren v und A ist.

Ist schlieBlich das betrachtete Flichenstiick nicht eben,
oder ist das Stromungsfeld nicht homogen, dann denken
wir uns die Fliche in hinreichend kleine Teilstiicke vom
GroBenwert AA zerlegt und den Fliachenvektor AA in der
Mitte eines jeden Teilstiicks errichtet. Jeder dieser Fla-
chenvektoren wird dann skalar mit dem Geschwindig-
keitsvektor multipliziert, der dem FuBSpunkt des Fldchen-
vektors zugeordnet ist. Fiir den Fluss @ durch die gesamte
Flidche A gilt dann:

o~ T A4

Denkt man sich nun die Anzahl der Teilflichen unbe-
grenzt wachsend, wobei AA gegen null geht, dann strebt
diese Summe einem Grenzwert zu, welcher der Fluss der
Stromung (oder, wie man etwas nachlissig sagt, der Fluss
des Vektors v ) durch die Fliche A ist und durch ein Fla-
chenintegral dargestellt wird:

@A:Alﬁ(}zv.AZ:/? dA.
A

Dieser Begriff des Flusses wird in der Physik auch auf
andere Vektorfelder iibertragen, vor allem auf elektri-
sche und magnetische Felder. Dies mag zunéchst etwas
befremden, aber man kann ja — als Hilfe fiir die Vor-
stellung - jeden beliebigen Feldvektor als den Geschwin-
digkeitsvektor einer Fliissigkeitsstromung interpretieren.
Man muss dann lediglich, wann immer vom Fluss eines
Feldvektors die Rede ist, sich vergegenwirtigen, dass da-
mit eigentlich der Fluss einer »virtuellen Fliissigkeit« ge-
meint ist, deren Geschwindigkeitsvektor der betrachtete
Feldvektor ist. Dazu das folgende Beispiel.
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Der »Fluss des Feldvektors«

e -

7
T4 Ameord

des zentralsymmetrischen Feldes einer Punkt- oder Ku-
gelladung mit dem Mittelpunkt in O durch eine konzen-
trische Kugelflache mit dem Radius R ist

@:/f-dZ:/E-dA:Mg)Rz/d
A A A

(Hinweis: Der Feldvektor steht iiberall auf der Kugelfla-
che senkrecht.)

Also: Wenn E der Geschwindigkeitsvektor eines Stro-
mungsfeldes wire, betriige der Fluss der Fliissigkeit durch
jede zur Ladung Q konzentrische Kugelfliche Q/e(. Der
Fluss ist der Ladung also proportional, und fiir Q = 0 wire
auch @ = 0. Demnach kénnte man die Ladung Q als die
»Quelle« des Feldes der virtuellen Fliissigkeit betrachten.
Fiir O < 0 wire auch @ < 0. Dies wire so zu interpretie-
ren: Der Geschwindigkeitsvektor ist - wie die Feldlinien
des Feldes — nach innen gerichtet und bildet mit den Fla-
chennormalen der Kugel iiberall den Winkel 180°, wes-
halb das Skalarprodukt E-dA = - E dA ist. Die negative
Ladung ist dann die »Senke« (= Gegenteil einer Quelle)
des Feldes.

Das Ergebnis @ = Q/e gilt tibrigens, wie sich zeigen lasst
und was auch durchaus plausibel erscheint, fiir jede be-
liebige, die Ladung Q umbhiillende Flache.

Zur Vereinfachung betrachte ich im Folgenden wieder ei-
nen »echten« Geschwindigkeitsvektor v eines Stromungs-
feldes, jedoch gelten die Betrachtungen und ihre Ergeb-
nisse fiir jedes beliebige Vektorfeld und sein virtuelles
Stromungsfeld.

Integriert man das Skalarprodukt v-dA tiiber eine ge-
schlossene Fliche (»Hiille«), so ist der Wert des »Hiil-
lenintegrals« gleich dem Fluss (Volumen/Zeit), der durch
die Hiille nach aufen tritt. Dieser muss gleich der »Schiit-
tung« S (= Ergiebigkeit) aller innerhalb der Hiille liegen-
den Quellen sein, wobei die Senken einen negativen Bei-
trag zur Schiittung liefern:

%7@2:5:2&.

Betrachten wir nun ein Raumgebiet vom Volumen AV.
Die Schiittung aller Quellen in diesem Raumgebiet sei AS.
Der Quotient AS/AV ist dann die »mittlere Quelldichte«
in diesem Gebiet:

Mittlere Quelldichte A—V = AV

7{7 dA.

7 DIE DIVERGENZ EINES FELDVEKTORS

7.2 Die Divergenz eines Feldvektors

Lasst man nun die Hiillfliche auf einen Punkt P schrump-
fen und somit AV gegen null gehen, so ist der Grenzwert

AS 1
Alm AV T A, Avf{?dz
A

die Quelldichte des Feldvektors (eigentlich: des Stro-
fﬁzlgies @essen Geschwindigkeitsvektor v ist) in

47 g(ggﬁl%unkt P, ayf den die Hiille geschrumpft ist. Sie wird

als die Divergenz des Vektors v im Punkt P bezeichnet:

(div 7)p = lim A5 j{? dA.

AV=0 AV - AV—>0 AV

Zur Berechnung der Divergenz aus dem Feldvektor v =
(vx vy vz) betrachten wir einen Quader mit den Seiten Ax,
Ay, Az, dessen Mittelpunkt der Punkt P (x, y, z) ist.

F_"{X.y.z}

V{:{-ﬁ}m.

Wx, y—ayi2, z}

Vix, vy, z+4212)

~

_ N\

-K

Die Flichennormalen auf den Seitenflichen sind die Ein-
heitsvektoren in Achsenrichtung: i, j, k sowie -i, -j, -k. (j
und der dazu gehorige Feldvektor sind nicht eingezeich-
net.)

Die Fliisse durch die einzelnen Seitenflichen sind:

AY

Vix, yAyi2, z)



7.4 Beispiele
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Ay =iV as Ay Az = (vw)(m+m v, 2 Ay Afdw?dV ]{7 a4

Ady = —iv, _as AyAsz

(Uz)(

Der gesamte Fluss A® durch die Flichen des Quaders ist
die Summe aus diesen sechs Fliissen. Er entspricht dem
Wert des Hiillenintegrals in der Definition der Divergenz.
Von den sechs Summanden lassen sich je zwei wie folgt
zusammenfassen:

—Tayaz)

A(I)l + A(I)Q (Ux)(aH»% JY,2) (U$)(:c

(”1)<I+M,y o~ I)ufﬁ
Az

Der Bruch auf der rechten Seite ist der »partielle Diffe-
renzenquotient« der Funktion vx fiir y = konst. und z =
konst. Fiir Ax gegen O wird daraus die partielle Ableitung
von vx nach x. Zusammen mit den iibrigen vier Summan-
den ergibt sich dann

—42,y,2)

Ay Az,

an einer Kugel vom Radius R um den Ursprung.

In Worten lautet der GAUSS-Integralsatz: Die Ergiebig-
keit der Quellen in einem Raumgebiet V ist gleich dem
Fluss durch dessen Hiillfldche.

Der FluB @ durch ihre Oberfliche ist ® =4 x R2 R =4
7t R3.

ie Ergiebigkeit S aller innerhalb der Kugel liegenden
Udleist S = Vdivr=3 V=4nR3

2. Es sei v(r) =r/r.

L Aapdy Betdvektor ist also radial nach auBen gerichtet und

hat die konstante Lange 1. Dann ist:

divE =divl(a§ Y z)7
r r

und

. AxAyAz (Ov avu
div ¥ = lim fﬁdz %ﬁom(ﬁﬁ Bt )
xr
und mit Ax Ay Az= AV Die partielle Ableitung 9~
berechnet man am einfachsten durch implizite Ableitung
div 7 = L= 4 O | O -
- Oz Oy 0z

7.3 Rechengesetze fiir Divergenzen

div 8 =0 8 : konstanter Vektor

div v = cdiv ¥ relle Zahl

div (U + @) =div ¥ +div &

div(U)=Udivv + 7 gad U U =U (z,y,2)
div(V x W) =W rot ¥ — ¥ rot &

C:

7.4 Beispiele

1. Gegeben ein Vektorfeld mit dem Feldvektor v(r) =r.

Der Feldvektor ist also radial nach auflen gerichtet, seine
Linge ist gleich der Lange des Ortsvektors des betreffen-
den Punktes. Dann ist:

or
ox

dy
dy

div?:div(x Y z): 2273.

Wir verifizieren an diesem Beispiel den GAUSS-
Integralsatz

0
r? = 2’ 4y? 422 2rdr =2xdr = oL =
Oz
Analog findet man
0
aF_y und ﬁ = E.
oy r oz r

Damit ergibt sich schlie3lich:

div— =2 r
r
Test:

Der Fluss des Vektors v = r/r durch die Oberfliche einer
Kugel um O mit dem Radius R ist

b =4rR? -1 =47 R2.

Das Volumen einer Kugelschale vom Radius » und der
Dicke dr ist

dV = 4rr3dr
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Die Ergiebigkeit der in der Kugelschale liegenden Quellen
ist

2
dS=dV.div v :47Tr2dr; =8rrdr.

Die Ergiebigkeit S der Quellen in einer Kugel vom Radius
R ist dann

R 218
52/871'7' dr = {87r}
2o

0

3. Dieses Beispiel ist von ganz anderer Natur als die vor-
angegangenen. Hier ist kein Feld vorgegeben, dessen Ei-
genschaften untersucht werden sollen, sondern eine phy-
sikalische Anordnung, ein sehr langer, elektrisch gelade-
ner Leiter, dessen Feld gesucht ist.

=A7R? = Op

L,

Al

Wir betrachten ein Leiterelement Al und eine Kreisschei-
be mit Radius R um dieses Leiterelement. Die im Leiter-
element vorhandene elektrische Ladung sei Ag, die »La-
dungsdichte« p also Ag/Al. Weiter oben haben wir gese-
hen, dass der von einer Ladung Q erzeugte Fluss @ des
Vektors E = gleich Q/gy ist.

Der von der Ladung Ag erzeugte Fluss A® des Vektors E
verlisst die Kreisscheibe nur an deren senkrechter Um-
randung, welche die Fliche AA = 2nR Al hat. Da der
Fluss auf der Umrandung stets senkrecht steht, gilt fiir
die Feldstirke am Rand

A0 A
T AA g02rRAl €027R

mit Ag
P= 77
Al

ERr

8 DIE ROTATION EINES FELDVEKTORS

Da E radial nach auflen gerichtet ist, ist

_p
co2mr?

Wir berechnen nun noch div E, die auerhalb des Leiters
iiberall null sein muss:

?
divE:dlv p —,
go2m 12
7 Ti +yj r27x2r%+r27y2rg—;
d1v—2:d1V 5 = 1
T r r

T2 =2 (v +yY)  2r?2 — 22
2 4 rd

Hier gibt es eine PDF-Version.

8 Die Rotation eines Feldvektors

3 ﬂlliinleitung - Zirkulation und Wirbel
eines Vektors

Vorbemerkung: Diese Einleitung ist etwas unkonventio-
nell. Sie versucht, die Begriffe und Zusammenhinge an-
schaulich werden zu lassen und dem Anfinger dadurch
die Chance zu bieten, sie wirklich zu verstehen.

Im Kapitel »Verschiebungsarbeit ...« (Vektoranalysis:
Teil 1) wurde gezeigt, dass das Linienintegral iiber das
Skalarprodukt v-ds gleich null ist,

- wenn das Integral sich iiber eine geschlossene Kurve er-
streckt und

- wenn ein Potentialfeld vorliegt, d. h. wenn der Vektor v
der Gradient eines Skalarfeldes ist.

Letzteres ist jedoch keineswegs immer der Fall, und auch
in der Physik gibt es wichtige Felder, die diese Bedingung
nicht erfiillen.

Ein Beispiel dafiir ist das magnetische Feld eines unend-
lich langen Leiters (Stromstirke 7).



8.1 Einleitung - Zirkulation und Wirbel eines Vektors

Der Leiter ist von konzentrischen kreisformigen Feldlini-
en umgeben; der Vektor H der Feldstérke steht auf dem
Radius ¢ senkrecht, fiir seinen Betrag H gilt:

1
727rp

Es lohnt sich, dieses Feld etwas genauer zu betrachten und
einige Uberlegungen anzustellen.

1. Bewegt man einen Magnetpol (linkes Bild) aus sehr
grofer (unendlicher) Entfernung radial zu irgendeinem
Punkt P hin, so ist dabei keine (positive oder negative)
Arbeit zu erbringen. Erfolgt die Bewegung jedoch schrig,
so hat der Weg eine Komponente in Richtung des Feldes,
und es ist daher Arbeit aufzuwenden. Das Linienintegral

15

/Pﬁ-d?

hat keinen bestimmten, vom Weg unabhingigen Wert.
Daher kann man dem Punkt P kein bestimmtes Potential
zusprechen.

. Betrachten wir eine Linie, die eine viereckige Fliche
un¥fasst, deren Seiten radial bzw. tangential verlaufen.
Manjkann sich leicht davon iiberzeugen, dass das Linien-
integral iiber den geschlossenen Umlauf den Wert null
re dagegen der Betrag der Feldstirke z. B. pro-
poanal 1/@2, wire das nicht so.)

3. Bei einem geschlossenen Umlauf, der den Leiter um-
schlingt (rechtes Bild), hat das Linienintegral dagegen —
unabhingig vom Weg - den Wert I (Stromstirke). Dies
zeigt, dass das Linienintegral iiber eine geschlossene Kur-
ve eine besondere Bedeutung haben kann. Darum wollen
wir uns genauer mit ihm befassen.

Definition: Unter der Zirkulation I” eines Vektors v lings
einer geschlossenen Kurve K versteht man das Linienin-
tegral des Vektors lings dieser Kurve:

F:fﬁ-d?

Beispiel: Wie oben gezeigt wurde, ist die Zirkulation des
Feldstidrkevektors H lings einer Feldlinie des Feldes ei-
nes unendlich langen Leiters gleich der Stromstéirke / im
Leiter. Umfasst dagegen die Kurve K den Leiter nicht, ist
die Zirkulation null.

Im Allgemeinen wird die Zirkulation auch von der um-
laufenen Fliche A abhidngen. Um deren Einfluss auszu-
schalten d1v1dlert man die Zirkulation durch die Flache

abenen Feld ist, wenn man
Guft,

langs der Umrandung einer kleinen Fliche AA und denkt
sich diese dann auf einen Punkt P schrumpfend, dann
wird der Quotient AI'/AA dabei im Allgemeinen einem
Grenzwert zustreben. Diesen Grenzwert nenne ich den
Wirbel w des Vektors v in P:

1 -
A}\Igo AA

wp = im
AA—O
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Beispiel: Lasst man bei dem oben betrachteten Feld den
Radius p des Kreises gegen null gehen, also auf den Lei-
termittelpunkt hin schrumpfen, so wird fiir den Stromfa-
den von punktformigem Querschnitt der Wirbel w = j. z

8.2 Berechnung des Wirbels — Die Rotati-
on

Es soll nun der Wirbel in einem Punkt einer gegebenen
Fldche berechnet werden.

In einem Raumgebiet, in dem durch eine Funktion v =
v(r) ein Vektorfeld definiert ist, befinde sich ein Flidchen-
stiick.

Die Abschnitte auf den Achsen seien 2Ax, 2Ay, 2Az.

Die Seitenmitten des Dreiecks sind dann

A(Az, Ay, 0); B(0, Ay, Az); C(Az,0,Az);

und seine Seitenvektoren

AT =—2A27 +2Ay 7,
AT =20y +2A: K,
AT =2A27 —2A: K

Zur (zunichst) angendherten Berechnung des Linieninte-
grals iiber die drei Seiten multiplizieren wir den jeweili-
gen Seitenvektor skalar mit dem Wert, den der Feldvektor
v in der Seitenmitte hat:

XS T dT~ T AT+ VAT + VAT,

Fiir die Vektoren vA, vB und vC gilt:

Durch einen Punkt P nahe an der Fliche legen wir ein

kleines Koordinatensystem, dessen Achsen parallel zu %7 , ~ %/ 5 + ((17> (AS)py s
den entsprechenden Achsen des groen Koordinatensys- ds / py

tems sind. Die Ebenen des kleinen Koordinatensystems 47

schneiden aus der Fliche ein kleines Flichenstiick her- 77 B~ ETe p+ () (A S)PB ,
aus, das wir durch ein ebenes Dreieck annéhern. ds /pp

VomTp+ (f)PC - (AS) pe -

Der Index PA bedeutet:



8.2 Berechnung des Wirbels — Die Rotation

bei der Richtungsableitung dv/ds dass diese an der Stelle
P und in der Richtung PA zu bilden ist,

bei As, dass damit die Strecke As = PA gemeint ist.

Zur Berechnung werden die drei » Ungefihrgleichungen«
in ihre Komponenten zerlegt:

v, 3% v,
TR T A

(V2) 4 = (Vz) p+

Dabei sind — wie auch im Folgenden — alle partiellen Ab-
leitungen an der Stelle P zu bilden.

Ferner ist:
ov ov ov
(vy) 4 = (vy) p+ ayA —l—aUA +8UA (Az
Ov, Ov, v,
(UZ)A%(UZ)P—I—a A+8A+8A (Az =

Analoges gilt fiir die Komponenten von vB und vC.

Wenn man die zusammengehdrigen Komponentenglei-
chungen wieder zu einer Vektorgleichung zusammen-
fasst, erhilt man:

d“’ Az + 5 vy Ay +0

VAo~ Up+ a“yAa;+a”yAy+0 ,
8”2 Az + 5’”2 = Ay +0
O—|—3”7A +8”TAZ

7B“N-‘7P+ 8vyA +81;yAZ ’

sz Ay+ avz Az

ZBU*Ax—l—O—i—‘;;’*Az
7()%7P+ gvyA —l—O—i—ﬁ;yA
Az + 0+ F=Az

Damit ergibt sich:
TAAT ~ T pAT + (G Ac + = Ay) (—240) +
(8vy Ax + avy Ay) 2Ay,

VAT ~ TpAT + (‘9 Ay + L Az) (—24y) +
(d“z Ay + 9= Az) 2Az,

TeAT ~ UpAT + (Z=A
(%Al‘ + 86”; Az) (—2Az).

Die Summe X dieser drei Skalarprodukte ist

T+ %Az) 20 +

Y o~ 7P(A7+A7+A?) +
(88”;’ 83”;) 28z Ay +
(% - 52 ) 2ap0z+

17

(8% B v,

52 o > 20z Az.

Dabei sind alle partiellen Ableitungen im Punkt P zu bil-
den.

Der erste Summand ist null, da die Summe der Seiten-

Az (Az = @ktoren des Dreiecks null ist.

Die letzten drei Summanden konnen interpretiert wer-
den als das Skalarprodukt aus einem Vektor V und einem
Vektor A W:

Ovy

- 3 2 Ay Az
Jy 0z Yy
7 z{;’f — % und AW =[2Az Az
0) vy _ v, 2 Az Ay
ox oy

ﬁer erste Vektor erhilt wegen seiner besonderen Bedeu-
ng einen eigenen Namen: Rotation (von) v (geschrie-
ben: rot v).

Die Komponenten des zweiten Vektors sind die Projek-
tionen der Fliche AA in die Koordinatenebenen: A Wx =
AAx, AWy = AAy, AWz = AAz.

Das heif3t: Der Vektor AW ist identisch mit dem Fldchen-
vektor AA. Dieser Vektor kann auch geschrieben werden
als

AA=AAn

wobei n der Normaleneinheitsvektor der Flache A A ist.

Folglich ist

27 d¥ ~ (rot 7)p -

und

1

— NV -dFT ~ 7 (rot ¥)

Lisst man nun den Punkt P unbeschrinkt an die Fldche
heranriicken, dann gehen AA und die Summe gegen null.
Fiir den Grenzwert des Quotienten gilt:

=77 - (rot V) p

Das heif3t: Der Wirbel w des Feldvektors v im Punkt P
einer Fliche ist gleich der Projektion des Vektors rot v an
dieser Stelle auf die Flichennormale.

Beachten Sie: Der Vektor rot v ist nur eine Funktion des
Ortsvektors r(x, y, z), wihrend der Wirbel auch von der
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Richtung der Fliche abhingt, fiir die der Wirbel berech-
net wird. Der Wirbel an einer bestimmten Stelle ist maxi-
mal, wenn die Flache auf rot v senkrecht steht; er ist null,
wenn der Vektor rot v in der Tangentialebene der Fliche
liegt.

8.3 Der Integralsatz von STOKES

Wir betrachten ein beliebiges Flachenstiick A mit dem
Rand C.

8 DIE ROTATION EINES FELDVEKTORS

wobei die Gestalt der Fliche vollig beliebig ist. Dies ist
der Integralsatz von STOKES.

8.4 Rechengesetze fiir Rotationen

ot (¢c¥)=crot ¥ c¢:
rot (U + W) =rot ¥ +rot W

rot (U W) =U rot ¥+(grad U)x¥ U =U (,y,2)

reelle Zahl

8.5 Erginzungen

1. Der Vektor rot v wird haufig als symbolische Determi-
nante geschrieben. Diese ist als Merkhilfe sehr niitzlich.

v, vy —
(6y W) ¢ +

Wir zerlegen die Fliche — wie in der Abbildung ange-
deutet — in kleine Flichenstiicke AAi mit den nach aufen
gerichteten Flachenvektoren AAi. Die einzelnen Fldchen-
stiicke sollen alle im gleichen Sinn wie der Rand C um-
laufen werden. Dabei werden alle Seiten — bis auf die, die
auf dem Rand C liegen — zweimal durchlaufen. Die Rich-
tungen der beiden Durchldufe aber sind gegensinnig.

Fiir jedes einzelne Flidchenstiick mit seinen vier Seiten gilt
dann:

4
Z 7116 . A?z,k ~ rot 71 . Azl
k=1

Summiert man tiber alle Flachenstiicke AAi, so fallen alle
die Summanden heraus, deren Asi, k nicht auf dem Rand
C liegt. Die iibrig bleibenden werden nun mit dem Index
Jj versehen:

4
ZzﬁzkA?zk = 27j~A?J— =) Zrot ;-

i k=1 j

Fiir alle AA gegen null (wobei natiirlich auch alle As gegen
null gehen) wird daraus

4T = 42
f?d? A/rot?d

$ Vo=

2. Setzt man im Integralsatz von STOKES v = grad U, so
ergibt sich, da das Kurvenintegral iiber grad U lidngs einer
geschlossenen Kurve stets null ist,

rot grad U =0

Das bedeutet: Ein Gradientenfeld (Potentialfeld) ist wir-
belfrei.

3. Ferner gilt:

divrot ¥ =0

Die Divergenz eines Feldes, dessen Feldvektor die Rota-
tion eines anderen Feldvektors ist, ist null. Ein »Rotati-
onsfeld« ist also quellenfrei.

Beweis am einfachsten durch Ausrechnen und Anwen-
dung des Satzes von SCHWARZ.

AA,

8.6 Beispiele

1. Ein Vektorfeld habe konzentrische, kreisformige Feld-
linien um die Z-Achse. Der GroBenwert v des Feldvek-
tors sei proportional 1/p (¢ = Abstand des betrachteten
Punktes von der Z-Achse). Gesucht die Gleichungen v =
v(r) und v = v(x, y, z) sowie rot v.
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Ein Beispiel fiir ein solches Feld ist das magnetische Feld
(Feldstiarke H) eines unendlich langen Leiters. (Siehe
»Einleitung — Zirkulation und Wirbel eines Vektors«)

Nach den MAXWELL-Gleichungen ist

— —
rot ﬁ = j  Vektor der Stromdichte
Da die Stromdichte auB3erhalb des Leiters iiberall null ist,
muss dort auch rot H = 0 sein.

Wir wenden nun zur Berechnung des Grof3enwerts H der
Feldstdrke den Integralsatz von STOKES auf eine Kreis-
fliche vom Radius ¢ an, die mit dem Leiter konzentrisch
ist und auf ihm senkrecht steht:

/rotﬁdZ:/ﬁd?

Nun ist einerseits

/rotﬁ-dﬁ:/?-dﬁ:/;’ dA=jq=1,

wobei g der Leiterquerschnitt und / die Stromstirke im
Der Feldvektor v hat die Richtung des Vektors k x r und | giter ist. Andererseits ist

soll den GroBenwert v = c/p haben. Ferner ist

_)
- - = - =9 Hds=H ¢ds=H2np.
kxT? =xj—yi =(—y « 0) und ‘kx?’: a:—l—yf 7{ s ?{ s P
c c c
und daher Also ist
o=
E x 7 c [/ c I
7:37:7@ 7>:77 =H2rp = H=_——.
=R g v o 0 2mp
N N — 2. Gesucht sind die Eigenschaften des Feldvektors
i j k
T = 2 2 2
—Y _z _ RS —
224y2 12442 0 chixr :Ck X?
57

— (0 x 0 -y
t v =ck (o - — :
o ¢ <8mx2+y2 8y;v2+y2>
(Siehe dazu die Abbildung bei Beispiel 1.)

Mit
Der Vektor v steht auf k und r senkrecht und hat die kon-
stante Linge c.
0 x a2y — a2 - y? —a® Ferner ist

kPP @+ @ +y))

_ 2 .2 N
0 y oy —x i

QW +y? (22 4y2)>
ergibt sich

c
rot ¥ =0 7;\/@(_%50)
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Damit wird
%
7 7%
ot 7 =¢| = T
Va2 o 4y? 0
— (0 x 0 —y
otV =ck | ——mn 2
(8:}: /22 1+ Y2 0y \/x2 + y2>
und schlieBlich
rot 7 = E?.
p

3. Eine ebene Scheibe mit der Flichennormalen 7 rotiere
mit der Winkelgeschwindigkeit @ um einen ihrer Punkte
P mit n als Drehachse. Gesucht der Geschwindigkeits-
vektor v eines ihrer Punkte im Abstand R von P.

Esist v=w R und

T=wi x B=w x (7 —7) usw.

Einfacher ist es jedoch, ein neues Koordinatensystem ein-
zufithren, dessen Achsen parallel zu denen des alten sind
und dessen Ursprung in P liegt. Dann ist:

7:w(ﬁ>xﬁ> und ﬁZ(l y z)

> > 7

i N
X ﬁ Ny Ny Nyl = (nyz —mn.y) i +

r Yy 2z

= —
(’I'sz - nzz) J + (nry - nyx) k

- - -

7 J k

- ) ) o)

rot 7 =w 9z Y 52
NyZ —NY NT — NgZ Nzl — NyT

- zt v = (8%

9 DER HAMILTONSCHE DIFFERENTIAL-OPERATOR NABLA (NABLA-OPERATOR)

9 Der Hamiltonsche Differential-
Operator Nabla (Nabla-
Operator)

Bei der Berechnung von Gradient, Divergenz und Ro-
tation werden an einer skalaren Funktion bzw. an ei-
ner Vektorfunktion bestimmte Rechenoperationen vor-
genommen. Diese weisen bei aller Verschiedenheit ge-
wisse formale Ahnlichkeiten auf: Immer werden die par-
tiellen Ableitungen der Funktion bzw. der Vektorkompo-
nenten gebildet.

1. Gradient: Es werden die partiellen Ableitungen der
Funktion U(x, y, z) berechnet und diese werden als Kom-
ponenten eines Vektors benutzt:

8£? oU — 8U?

dU = —
g Ox +8yj+5'z

Dieser Vektor kann formal aufgefasst werden als das Pro-
dukt aus und einem »symbolischen Vektor«

2. Divergenz: Die Komponenten eines Vektors v = (vx
vy vz) werden partiell »nach ihrem Index« abgeleitet und
daraus durch Addition eine skalare Funktion gebildet:

L
= oz oy

ov,,
0z

Diese Summe kann formal aufgefasst werden als das
Skalarprodukt aus Vektor Nabla und dem Vektor

-
7:%1 +uyj vk

0 — 8—> 0 —

ar ' Tay’ o

3. Rotation: Die Komponenten eines Vektors v werden
partiell »nach den beiden anderen Indices« abgeleitet und
daraus Differenzen nach Art eines Vektorprodukts ge-
bildet. Diese werden schlielich als Komponenten eines
neuen Vektors benutzt. In der Schreibweise als symboli-
sche Determinante wird dies am anschaulichsten:

vy Ty Ovg
9z ) " 0z

div7=<

dy

dv. i+ %_
or J Ox

Ovy
dy

— k )(vm? + vy7 + vz?) =V-.

)?
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- = 7

i j  k
-9 o0 9
ox Jy 0z

Vg Uy Uy

Dieser Vektor wiederum kann formal aufgefasst wer-
den als das Vektorprodukt aus dem symbolischen Vektor
Nabla und dem Vektor v:

rot ¥ =V x U.

Der symbolische Vektor Nabla wird »Hamiltonscher Dif-
ferentialoperator« oder Nabla-Operator genannt. (Der
Name beruht auf der Ahnlichkeit des Symbols mit der
antiken Harfe Nabla.) Also:

Zusammenfassung:
Mit
0 0 0 —
V=—1+_— — k
ox v oy 3+ 0z

ist

gad U=VU, divy =V-U, rot¥=VxT.

Hier gibt es eine PDF-Version.

10 Anhang

In diesem Anhang stelle ich zunichst die Beweise der
elementaren Rechengesetze fiir die Differentialoperato-
ren Gradient, Divergenz und Rotation zusammen. Dabei
gehe ich auch die Anwendung des Differentialoperators
Nabla ein. Danach beweise ich die Rechengesetze fiir die
Kombinationen der Differentialoperatoren. Dabei setze
ich die Rechengesetze der Analysis (skalerer Funktionen)
als bekannt (und bewiesen) voraus.

Zur deutlichen und auffilligen Unterscheidung verwende
ich dabei fiir skalare Ortsfunktionen die Buchstaben f =
f(x, v, z), g = g(x, ¥, ) usw., fiir vektorielle Ortsfunktio-
nen die Buchstaben v = v(x, y, z), w = w(x, y, z) usw.

10.1 Elementare Rechengesetze fiir die
Differentialoperatoren

10.1.1 Gradient

i) 2 a(fa; 2,20
. i
Ebc By oz Ebc gy
—grad { +gradg

V(f+g)=Vf+Vg

g -5) 2L 81 20D 4 20D
A

f iP5 L. 08
=i i t+j gt = 4]
I st g g E iy

=(grad [ |g t+ fgrad g

V(f8)=Ne+ fig
A &
Urs

ad 7 =i
orad | —.:ax o

i L f,klf +

=n ™ orad f

tkn o

Vit =n N
gt 1) =2 120D 3 )
3f(§) %, ;U8) % U@
g de oy dg &
()
J

orad o

v(e) = L2
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10.1.2 Divergenz

10 ANHANG

10.1.3 Rotation

a(p+ 1‘1))‘ + E}(v +'“"')J, + a(‘l"l’ '“"')x

divi(w +w) =

& &y

81} 81-’}, B‘Li' BW
= A+ + T+ L

iz

iy By dz e

dive + divw

Vw+w)=Ve+Vw

div(fv) = 3
z

hY
_%‘, +f%+g‘,y+f_
X

=% o
= (grad /) -v+ { divwe

V() =Nf vt iy

dwxw), + Bwxw),

div(wxw) = +.
Py gy
3. 12
=—|v.w —v.w —v
get 7T TN gy
va tw o
=W, + v g — £ w
iy . gy 7
. B N dw, By,
E'_}! % = By 3_}'
ow. v
+_ 1w + Y
gz 7 7 Bz Bz

= (rotw)w—vrotw

V(wxw) = (Vxv)w-—v(Vxv)

o)., 2, | Y,
dx £

thw
+ =
iz
af dw
— vy + =
iz nts tz
i J
d d
rot(w+w) = — o
£he dy
(wtw), (viw) y
i J k i
a a 3 d
o I Y
iy ay iz e
v, vV, V.| |W,

=rotvt+rotw

‘?x(v+ w') =VWxw+iWxw

iz

v+ w),

¥lo

= {;:L’|c::-_u L
=
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i j Kk orad divw =V (Vw),
| iE 3 5 divgrad [ =V (J[),
rot(fv) = o 5 = divrotw =V (V xv),
f v, fv, S, rotgrad f =V x(grad 1),

rotrotw = V x (W xw).

: —f‘v‘ ——f‘b’ [B ——Jv J

aﬁV ir untersa&en nu dleselé(@%bmatlone

I
-

\

f
=i iv +f%—%v jgladdnv '“T.-"('Vv)—t—chi'v+_;ith1v+kﬂch1v

By R £ gy £z

\

2 2 2 2
+jriu+favx_iu_ :i"Fﬁvﬂ‘+a1’??+avx +_;'an e
dz & g 7 ot Bydx dzdx dxdy oy

f & 2 2 2
+k %F}--I-fi_gv;‘_, +k Bvx_l_avy_l_a‘l';z

| O e oy dxdz dyfz oz
— f i avx _ ai\ +jr 3‘1-’ W%Fteri){ eké&ugﬁquig‘ s¥mboh%che Abkiirzun-

ay A ) BZ gemging nic m%lch

Bf 3 Bf dngladf V() =div Bi Jikg :ajf+2

P + 5 2
By ' gz 7 e \ Bz dy Oz ] o -
’ (A =LA
i j k
= frotw+ ¥ ¥y Fiir die Anwendung auf eine skalare Ortsfunktion gilt
e gy Oz
v, ¥, ¥ [ &
! i’ : divroty = ‘?(\_.-’xv) =div|i sz —i + 4 Bvx —ﬂ
= frotw+(grad /) xv = (gra dy oz & g

3 avx_avy‘Jra[avx_aux]Jra B,

Vx(fw) =Nfxwt f(Vxv) x| a8z | ez B ) &z Bx

Beweis durch Ausrechnen und Beachtung des Satzes von
SCHWARZ, der besagt, dass bei Stetigkeit der zweiten
Ableitungen die Reihenfolge der Differentiationen belie-
big ist. Man sieht, dass in diesem Fall der symbolische
Vektor Nabla der Regel folgt, dass das Skalarprodukt

10.2  Zweifache Differentialoperationen zweier aufeinander senkrechter Vektoren null ist.

Durch Kombination von zwei Differentialoperatoren
(Gradient, Divergenz, Rotation) werden die zweiten par-
tiellen Ableitungen der betreffenden Funktion(en) gebil-
det. Wegen der Natur (Skalar oder Vektor) und wegen der
Anwendbarkeit (auf skalare Funktionen oder auf Vektor-
funktionen) sind nur bestimmte Kombinationen moglich.
Diese sind:
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i j kK
3 3 rotrotw =V x (W x v) =rot E E ﬂ
l‘ﬂtgl‘a(lf:?x(‘ﬂf):mt ii+ji+k £x a}f’ gz
e Oy v, v,
d
—rot|i 2z - Do |4 j e - Pe ] 4
gy Bz dz o
N AN LA
dy ayaz| 7| oxaz o
i Jj k
Die Begriindung ist dieselbe wie oben (Satz von il p A
SCHWARZ). Auch hier folgt der Nabla-Operator ei- = — —_— R
nem Rec'hengesetz der Vektora}gebra: Das Vektorpro- o a_}? &z
dukt zweier paralleler Vektoren ist null. E}ux i BVJI ,_F}L;x ) avx Suy ) avx
dy Bz gz dx gy
_ii %_av;‘ _E BV}‘_BVX 4
gyl dx vy | dz| B2
(afav. av,) afov, &
+j | —= ¥ —_ _J'___x +
oz \ gy Oz ) che \ dx  dy
(o fav, &) 8(dv, 1]
+k - Ao = |- - g _ ¥
dx| dz o | Oy \ dy Bz )
(8, v, v, B
=i - - + +
oxdy &' & oz
[ 2 2
b v, _3vy _3 v, +32Vx\]+
dydz  8z° At dydx
4

. 2
'k v, d%v

)
v, Y

F

.

- - +
dzdx o' Byt 0zd

F,

Dieser Vektor kann so umgeformt werden, dass daraus
ein Ausdruck wird, der sich spiter in der Elektrodynamik
als sehr niitzlich erweist: Zu seinen Komponenten werden
jeweils drei Terme addiert, die am Ende wieder subtra-
hiert werden, sodass daraus die Differenz zweier Vekto-
ren wird. Der erste davon ist der Vektor grad div v.
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AR S

WV
rotrotw =i —2 A QR PRI RIS

By By B2 bz e By kb

)

| 2%, 32Vy Fvoophy o P v B

t T a3 ; t —+ ; t zy t :ay
tydz  dz g’ dydhe dx gy fz
L B
F
2 2 2 32 2 2
+k3vx 3v2_3u2+ Vy+3vx+ &y

Y
—_ + z
dix Bt Ayt Bz X By 822.
¢

RV R R R & R
— 1' E + ¥ + k4 +j E] + 2.]" + T +
ox’  kxdy iz gyt oy dydz

EVINE RAUN: L
+k B A e 4 B
fedx  dzdy A2
ERTR: VI R Fv o Py P
—i LI A k] _J ;" + ;" + ;" +
gt Byt B £ oy gz
A J
R VR: VIR B

R _
z

= grad divw — (i, + jAv, + kAv, ).

Der letzte Term ist der Vektor, der durch Anwendung des
LAPLACE-Operators auf den Vektor v entsteht. Also ist

rotrotw = graddivv - Aw
oder

Vx(Fxw)=VW-v)-(V-V)wv

25
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11

11 TEXT- UND BILDQUELLEN, AUTOREN UND LIZENZEN

Text- und Bildquellen, Autoren und Lizenzen

11.1 Text

Vektoranalysis: Druckversion Quelle: https://de.wikibooks.org/wiki/Vektoranalysis%3A_Druckversion?oldid=313662 Autoren: Heu-
ler06

11.2 Bilder

Datei:AnhV-1.PNG Quelle: https://upload.wikimedia.org/wikibooks/de/9/90/AnhV-1.PNG Lizenz: ? Autoren: ? Urspriinglicher Schopfer:
?

Datei:AnhV-10.PNG Quelle: https://upload.wikimedia.org/wikibooks/de/a/a3/AnhV-10.PNG Lizenz: ? Autoren: ? Urspriinglicher Schop-

fer:?

Datei:AnhV-11.PNG Quelle: https://upload.wikimedia.org/wikibooks/de/a/ab/AnhV-11.PNG Lizenz: ? Autoren: ? Urspriinglicher Schop-
fer:?

Datei:AnhV-12.PNG Quelle: https://upload.wikimedia.org/wikibooks/de/7/70/ AnhV-12.PNG Lizenz: ? Autoren: ? Urspriinglicher Schop-
fer:?

Datei:AnhV-13.PNG Quelle: https://upload.wikimedia.org/wikibooks/de/2/23/AnhV-13.PNG Lizenz: ? Autoren: ? Urspriinglicher Schop-
fer:?

Datei:AnhV-14.PNG Quelle: https://upload.wikimedia.org/wikibooks/de/1/17/AnhV-14.PNG Lizenz: ? Autoren: ? Urspriinglicher Schop-
fer:?

Datei:AnhV-15.PNG Quelle: https://upload.wikimedia.org/wikibooks/de/5/53/AnhV-15.PNG Lizenz: ? Autoren: ? Urspriinglicher Schop-
fer:?

Datei:AnhV-16.PNG Quelle: https://upload.wikimedia.org/wikibooks/de/4/45/AnhV-16.PNG Lizenz: ? Autoren: ? Urspriinglicher Schop-
fer:?

Datei:AnhV-17.PNG Quelle: https://upload.wikimedia.org/wikibooks/de/5/5a/AnhV-17.PNG Lizenz: ? Autoren: ? Urspriinglicher Schop-
fer:?

Datei:AnhV-2.PNG Quelle: https://upload.wikimedia.org/wikibooks/de/6/6d/AnhV-2.PNG Lizenz: ? Autoren: ? Urspriinglicher Schopfer:
?

Datei:AnhV-3.PNG Quelle: https://upload.wikimedia.org/wikibooks/de/7/7e/AnhV-3.PNG Lizenz: ? Autoren: ? Urspriinglicher Schopfer:
?

Datei:AnhV-4.PNG Quelle: https://upload.wikimedia.org/wikibooks/de/5/5d/AnhV-4.PNG Lizenz: ? Autoren: ? Urspriinglicher Schopfer:
?

Datei:AnhV-5.PNG Quelle: https://upload.wikimedia.org/wikibooks/de/8/85/AnhV-5.PNG Lizenz: ? Autoren: ? Urspriinglicher Schopfer:
?

Datei:AnhV-6.PNG Quelle: https://upload.wikimedia.org/wikibooks/de/a/a9/AnhV-6.PNG Lizenz: ? Autoren: ? Urspriinglicher Schopfer:
?

Datei:AnhV-7.PNG Quelle: https://upload.wikimedia.org/wikibooks/de/b/b1/AnhV-7.PNG Lizenz: ? Autoren: ? Urspriinglicher Schopfer:
?

Datei:AnhV-8.PNG Quelle: https://upload.wikimedia.org/wikibooks/de/0/07/AnhV-8.PNG Lizenz: ? Autoren: ? Urspriinglicher Schopfer:
?

Datei:AnhV-9.PNG Quelle: https://upload.wikimedia.org/wikibooks/de/b/b5/AnhV-9.PNG Lizenz: ? Autoren: ? Urspriinglicher Schopfer:
?

Datei:Rotation_001.PNG Quelle: https://upload.wikimedia.org/wikibooks/de/2/2a/Rotation_001.PNG Lizenz: ? Autoren: ? Urspriingli-
cher Schopfer: ?

Datei:SiPe_Vektoranalysis_1.PNG Quelle: https://upload.wikimedia.org/wikibooks/de/2/22/SiPe_Vektoranalysis_1.PNG Lizenz: ? Au-
toren: ? Urspriinglicher Schopfer: ?

Datei:SiPe_Vektoranalysis_2.PNG Quelle: https://upload.wikimedia.org/wikibooks/de/9/90/SiPe_Vektoranalysis_2.PNG Lizenz: ? Au-
toren: ? Urspriinglicher Schopfer: ?

Datei:VA-05.4.JPG Quelle: https://upload.wikimedia.org/wikibooks/de/a/a2/VA-05.4.JPG Lizenz: ? Autoren: ? Urspriinglicher Schopfer:
?

Datei:VA-05.5.JPG Quelle: https://upload.wikimedia.org/wikibooks/de/3/30/VA-05.5.JPG Lizenz: ? Autoren: ? Urspriinglicher Schopfer:
?

Datei:VA-05.8.JPG Quelle: https://upload.wikimedia.org/wikibooks/de/1/18/VA-05.8.JPG Lizenz: ? Autoren: ? Urspriinglicher Schopfer:
?

Datei:VA-10.JPG Quelle: https://upload.wikimedia.org/wikibooks/de/0/0c/VA-10.JPG Lizenz: ? Autoren: ? Urspriinglicher Schopfer: ?
Datei:VA-11.PNG Quelle: https://upload.wikimedia.org/wikibooks/de/9/99/VA-11.PNG Lizenz: ? Autoren: ? Urspriinglicher Schopfer: ?
Datei:VA-47.JPG Quelle: https://upload.wikimedia.org/wikibooks/de/1/1c/VA-47.JPG Lizenz: ? Autoren: ? Urspriinglicher Schopfer: ?
Datei:VA-56.JPG Quelle: https://upload.wikimedia.org/wikibooks/de/6/69/VA-56.JPG Lizenz: ? Autoren: ? Urspriinglicher Schopfer: ?

Datei:VA-60.13.JPG Quelle: https://upload.wikimedia.org/wikibooks/de/f/f1/VA-60.13.JPG Lizenz: ? Autoren: ? Urspriinglicher Schop-
fer:?
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